
AAA615: Formal Methods

Lecture 1 — Propositional Logic

Hakjoo Oh
2017 Fall

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 1 / 42



Syntax

Atom: basic elements
I truth symbols ⊥ (“false”) and > (“true”)
I propositional variables P,Q,R, . . .

Literal: an atom α or its negation ¬α.

Formula: a literal or the application of a logical connective (boolean
connective) to formulas

F → ⊥
| >
| P
| ¬F negation (”not”)
| F1 ∧ F2 conjunction (”and”)
| F1 ∨ F2 disjunction (”or”)
| F1 → F2 implication (”implies”)
| F1 ↔ F2 iff (”if and only if”)

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 2 / 42



Syntax

Formula G is a subformula of formula F if it occurs syntactically
within G.

sub(⊥) = {⊥}
sub(>) = {>}
sub(P ) = {P}

sub(¬F ) = {¬F} ∪ sub(F )
sub(F1 ∧ F2) = {F1 ∧ F2} ∪ sub(F1) ∪ sub(F2)

F : (P ∧Q) → (P ∨ ¬Q)
I sub(F ) =

The strict subformulas of a formula are all its subformulas except
itself.

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 3 / 42



Semantics

The semantics of a logic provides its meaning. The meaning of a PL
formula is either true or false.
The semantics of a formula is defined with an interpretation that
assigns truth values to propositional variables, e.g.,
I : {P 7→ true, Q 7→ false, . . .}.

I F : P ∧Q → P ∨ ¬Q
Inductive definition of semantics:

I We write I � F if F evaluates to true under I.
I We write I 2 F if F evaluates to false under I.
I � >, I 2 ⊥,
I � P iff I[P ] = true
I 2 P iff I[P ] = false
I � ¬F iff I 2 F
I � F1 ∧ F2 iff I � F1 and I � F2

I � F1 ∨ F2 iff I � F1 or I � F2

I � F1 → F2 iff I 2 F1 or I � F2

I � F1 ↔ F2 iff (I � F1 and I � F2) or (I 2 F1 and I 2 F2)

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 4 / 42



Example

Consider the formula

F : P ∧Q → P ∨ ¬Q

and the interpretation

I : {P 7→ true, Q 7→ false}

The truth value of F is computed as follows:

1. I � P since I[P ] = true
2. I 6� Q since I[Q] = false
3. I � ¬Q by 2 and semantics of ¬
4. I 6� P ∧Q by 2 and semantics of ∧
5. I � P ∨ ¬Q by 1 and semantics of ∨
6. I � F by 4 and semantics of →

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 5 / 42



Satisfiability and Validity

A formula F is satisfiable iff there exists an interpretation I such
that I � F .

A formula F is valid iff for all interpretations I, I � F .

Satisfiability and validity are dual1:

F is valid iff ¬F is unsatisfiable

We can check satisfiability by deciding validity, and vice versa.

1In logic, functions (or relations) A and B are dual if A(x) = ¬B(¬x)
Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 6 / 42



Deciding Validity and Satisfiability

Two approaches to show F is valid:

Truth table method performs exhaustive search: e.g.,
F : P ∧Q → P ∨ ¬Q.

P Q P ∧Q ¬Q P ∨ ¬Q F

0 0 0 1 1 1
0 1 0 0 0 1
1 0 0 1 1 1
1 1 1 0 1 1

Impractical and non-applicable to logic with infinite domain (e.g.,
first-order logic).
Semantic argument method uses deduction:

I Assume F is invalid: I 2 F for some I (falsifying interpretation).
I Apply deduction rules (proof rules) to derive a contradiction.
I If every branch of the proof derives a contradiction, then F is valid.
I If some branch of the proof never derives a contradiction, then F is

invalid. This branch describes a falsifying interpretation of F .

SAT solvers use both search and deduction.
Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 7 / 42



Deduction Rules for Propositional Logic

I � ¬F
I 2 F

I 2 ¬F
I � F

I � F ∧G
I � F, I � G

I 2 F ∧G
I 2 F | I 2 G

I � F ∨G
I � F | I � G

I 2 F ∨G
I 2 F, I 2 G

I � F → G
I 2 F | I � G

I 2 F → G
I � F, I 2 G

I � F ↔ G
I � F ∧G | I � ¬F ∧ ¬G

I 2 F ↔ G
I � F ∧ ¬G | I � ¬F ∧G

I � F I 2 F
I � ⊥

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 8 / 42



Example 1

To prove that the formula

F : P ∧Q → P ∨ ¬Q

is valid, assume that it is invalid and derive a contradiction:

1. I 2 P ∧Q → P ∨ ¬Q assumption
2. I � P ∧Q by 1 and semantics of →
3. I 2 P ∨ ¬Q by 1 and semantics of →
4. I � P by 2 and semantics of ∧
5. I 2 P by 3 and semantics of ∨
6. I � ⊥ 4 and 5 are contradictory

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 9 / 42



Example 2

To prove that the formula

F : (P → Q) ∧ (Q → R) → (P → R)

is valid, assume that it is invalid and derive a contradiction:

1. I 2 F assumption
2. I � (P → Q) ∧ (Q → R) by 1 and semantics of →
3. I 2 P → R by 1 and semantics of →
4. I � P by 3 and semantics of →
5. I 2 R by 3 and semantics of →
6. I � P → Q 2 and semantics of ∧
7. I � Q → R 2 and semantics of ∧

Two cases consider from 6:

1 I 2 P : contradiction with 4.

2 I � Q: two cases to consider from 7:

1 I 2 Q: contradiction
2 I � R: contradiction with 5.

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 10 / 42



Exercise

Prove that the formula

F : P ∨Q → P ∧Q

is valid.

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 11 / 42



Derived Rules

The proof rules are sufficient, but derived rules can make proofs more
concise. E.g., the rule of modus ponens:

I � F I � F → G
I � G

The proof of the validity of the formula:

F : (P → Q) ∧ (Q → R) → (P → R)

1. I 2 F assumption
2. I � (P → Q) ∧ (Q → R) by 1 and semantics of →
3. I 2 P → R by 1 and semantics of →
4. I � P by 3 and semantics of →
5. I 2 R by 3 and semantics of →
6. I � P → Q 2 and semantics of ∧
7. I � Q → R 2 and semantics of ∧
8. I � Q by 4, 6, and modus ponens
9. I � R by 8, 7, and modus ponens
10. I � ⊥ 5 and 9 are contradictory

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 12 / 42



Equivalence and Implication

Two formulas F1 and F2 are equivalent

F1 ⇐⇒ F2

iff F1 ↔ F2 is valid, i.e., for all interpretations I, I � F1 ↔ F2.

Formula F1 implies formula F2

F1 =⇒ F2

iff F1 → F2 is valid, i.e., for all interpretations I, I � F1 → F2.

F1 ⇐⇒ F2 and F1 =⇒ F2 are not formulas. They are semantic
assertions.

We can check equivalence and implication by checking satisfiability.

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 13 / 42



Exercise

Prove that
R ∧ (¬R ∧ P ) =⇒ P

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 14 / 42



Substitution

A substitution σ is a mapping from formulas to formulas:

σ : {F1 7→ G2, . . . , Fn 7→ Gn}

The domain of σ, dom(σ), is

dom(σ) : {F1, . . . , Fn}

while the range range(σ) is

range(σ) : {G1, . . . , Gn}

The application of a substitution σ to a formula F , Fσ, replaces
each occurence of Fi with Gi. Replacements occur all at once.

When two subformulas Fj and Fk are in dom(σ) and Fk is a strict
subformula of Fj , then Fj is replaced first.

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 15 / 42



Example

Consider formula
F : P ∧Q → P ∨ ¬Q

and substitution

σ : {P 7→ R,P ∧Q 7→ P → Q}

Then,
Fσ : (P → Q) → R ∨ ¬Q

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 16 / 42



Substitution

A variable substitution is a substitution in which the domain consists
only of propositional variables.

When we write F [F1, . . . , Fn], we mean that formula F can have
formulas F1, . . . , Fn as subformulas.

If σ is {F1 7→ G1, . . . , Fn 7→ Gn}, then

F [F1, . . . , Fn]σ : F [G1, . . . , Gn]

For example, in the previous example, writing

F [P, P ∧Q]σ : F [R,P → Q]

emphasizes that P and P ∧Q are replaced by R and P → Q,
respectively.

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 17 / 42



Semantic Consequences of Substitution

Lemma (Substitution of Equivalent Formulas)

Consider substitution σ : {F1 7→ G1, . . . , Fn 7→ Gn} such that for
each i, Fi ⇐⇒ Gi. Then, F ⇐⇒ Fσ.

Lemma (Valid Template)

If F is valid and G = Fσ for some variable substitution σ, then G is
valid.

For example, because

F : (P → Q) ↔ (¬P ∨Q)

is valid, every formula of the form F1 → F2 is equivalent to ¬F1 ∨ F2,
for arbitrary formulas F1 and F2.

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 18 / 42



Composition of Substitutions

Given substitutions σ1 and σ2, their composition σ = σ1σ2 (“apply σ1

and then σ2”) is computed as follows:

1 Apply σ2 to each formula of the range of σ1, and add the results to
σ.

2 If Fi of Fi 7→ Gi appears in the domain of σ2 but not in the domain
of σ1, then add Fi 7→ Gi to σ.

For example,

σ1σ2 : {P 7→ R,P ∧Q 7→ P → Q}{P 7→ S, S 7→ Q}
= {P 7→ Rσ2, P ∧Q 7→ (P → Q)σ2, S 7→ Q}
= {P 7→ R,P ∧Q 7→ S → Q,S 7→ Q}

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 19 / 42



Normal Forms

A normal form of formulas is a syntactic restriction such that for every
formula of the logic, there is an equivalent formula in the normal form.
Three useful normal forms in logic:

Negation Normal Form (NNF)

Disjunctive Normal Form (DNF)

Conjunctive Normal Form (CNF)

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 20 / 42



Negation Normal Form (NNF)

NNF requires that ¬, ∧, and ∨ are the only connectives (i.e., no →
and ↔) and that negations appear only in literals.

I P ∧Q ∧ (R ∨ ¬S)
I ¬P ∨ ¬(P ∧Q))
I ¬¬P ∧Q

Transforming a formula F to equivalent formula F ′ in NNF can be
done by repeatedly applying the following list of template
equivalences:

¬¬F1 ⇐⇒ F1

¬> ⇐⇒ ⊥
¬⊥ ⇐⇒ >

¬(F1 ∧ F2) ⇐⇒ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇐⇒ ¬F1 ∧ ¬F2

F1 → F2 ⇐⇒ ¬F1 ∨ F2

F1 ↔ F2 ⇐⇒ (F1 → F2) ∧ (F2 → F1)

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 21 / 42



Exercise

Convert F : ¬(P → ¬(P ∧Q)) into NNF.

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 22 / 42



Disjunctive Normal Form (DNF)

A formula is in disjunctive normal form (DNF) if it is a disjunction of
conjunctive clauses (conjunctions of literals):∨

i

∧
j

li,j

To convert a formula F into an equivalent formula in DNF, transform
F into NNF and then distribute conjunctions over disjunctions:

(F1 ∨ F2) ∧ F3 ⇐⇒ (F1 ∧ F3) ∨ (F2 ∧ F3)
F1 ∧ (F2 ∨ F3) ⇐⇒ (F1 ∧ F2) ∨ (F1 ∧ F3)

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 23 / 42



Exercise

To convert
F : (Q1 ∨ ¬¬Q2) ∧ (¬R1 → R2)

into DNF,

first transform it into NNF:

then apply distributivity:

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 24 / 42



Conjunctive Normal Form (CNF)

A formula is in conjunctive normal form (CNF) if it is a conjunction
of clauses (i.e. conjunctions of disjunctions of literals):∧

i

∨
j

li,j

To convert a formula F into an equivalent formula in DNF, transform
F into NNF and distribute disjunctions over conjunctions:

(F1 ∧ F2) ∨ F3 ⇐⇒ (F1 ∨ F3) ∧ (F2 ∨ F3)
F1 ∨ (F2 ∧ F3) ⇐⇒ (F1 ∨ F2) ∧ (F1 ∨ F3)

Exercise) Convert F : (Q1 ∧ ¬¬Q2) ∨ (¬R1 → R2) into CNF.

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 25 / 42



Decision Procedures

A decision procedure decides whether F is satisfiable after some
finite steps of computation.

Approaches for deciding satisfiability:
I Search: exhaustively search through all possible assignments
I Deduction: deduce facts from known facts by iteratively applying

proof rules
I Combination: Modern SAT solvers are based on DPLL that combines

search and deduction in an effective way

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 26 / 42



Exhaustive Search

The recursive algorithm for deciding satisfiability:

let rec SAT F =
if F = > then true
else if F = ⊥ then false
else

let P = Choose(vars(F )) in
(SAT F{P 7→ >}) ∨ (SAT F{P 7→ ⊥})

When applying F{P 7→ >} and F{P 7→ ⊥}, the resulting
formulas should be simplified using template equivalences on PL.

> ⇐⇒ ¬⊥ ⊥ ⇐⇒ ¬> ¬¬F ⇐⇒ F
F ∧ > ⇐⇒ F F ∧ ⊥ ⇐⇒ ⊥ F ∧ F ⇐⇒ F
F ∨ > ⇐⇒ > F ∨ ⊥ ⇐⇒ F F ∨ F ⇐⇒ F

. . .

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 27 / 42



Example

F : (P → Q) ∧ P ∧ ¬Q

Choose variable P and

F{P 7→ >} : (> → Q) ∧ > ∧ ¬Q

which simplifies to
F1 : Q ∧ ¬Q

I F1{Q 7→ >} : ⊥
I F1{Q 7→ ⊥} : ⊥

Recurse on the other branch for P in F :

F{P 7→ ⊥} : (⊥ → Q) ∧ ⊥ ∧ ¬Q

which simplifies to ⊥.

All branches end without finding a satisfying assignment.
Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 28 / 42



Example

F : (P → Q) ∧ ¬P

Choose P and recurse on the first case:

F{P 7→ >} : (> → Q) ∧ ¬T

which is equivalent to ⊥.

Try the other case:

F{P → ⊥} : (⊥ → Q) ∧ ¬⊥

which is equivalent to >.

Arbitrarily assigning a value to Q produces the satisfying
interpretation:

I : {P 7→ false, Q 7→ true}.

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 29 / 42



Equisatisfiability

SAT solvers convert a given formula F to CNF.

Conversion to an equivalent CNF incurs exponential blow-up in
worst-case.

F is converted to an equisatisfiable CNF formula, which increases the
size by only a constant factor.

F and F ′ are equisatisfiable when F is satisfiable iff F ′ is
satisfiable.

Equisatisfiability is a weaker notion of equivalence, which is still useful
when deciding satisfiability.

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 30 / 42



Conversion to an Equisatisfiable Formula in CNF

Idea: Introduce new variables to represent the subformulas of F with
extra clauses that assert that these new variables are equivalent to
the subformulas that they represent.
F : x1 → (x2 ∧ x3)

I Introduce two variables a1 and a2 with two equivalences:

a1 ↔ (x1 → a2)
a2 ↔ (x2 ∧ x3)

We need to satisfy a1, together with the above two equivalences.
I Convert the equivalences to CNF:

(a1 ∨ x1) ∧ (a1 ∨ ¬a2) ∧ (¬a1 ∨ ¬x1 ∨ a2)
(¬a2 ∨ x2) ∧ (¬a2 ∨ x3) ∧ (a2 ∨ ¬x2 ∨ ¬x3)

I The final CNF formula:

F ′ = a1 ∧ (a1 ∨ x1) ∧ (a1 ∨ ¬a2) ∧ (¬a1 ∨ ¬x1 ∨ a2)∧
(¬a2 ∨ x2) ∧ (¬a2 ∨ x3) ∧ (a2 ∨ ¬x2 ∨ ¬x3)

I F is satisfiable iff F ′ is satisfiable

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 31 / 42



The Resolution Procedure

Applicable only to CNF formulas.

Observation: to satisfy clauses C1[P ] and C2[¬P ] that share
variable P but disagree on its value, either the rest of C1 or the rest
of C2 must be satisfied. Why?

The clause C1[⊥] ∨ C2[⊥] (with simplification) can be added as a
conjunction to F to produce an equivalent formula still in CNF.

The proof rule for clausal resolution:

C1[P ] C2[¬P ]

C1[⊥] ∨ C2[⊥]

The new clause C1[⊥] ∨ C2[⊥] is called the resolvent.

If ever ⊥ is deduced via resolution, F must be unsatisfiable.
Otherwise, if no further resolutions are possible, F must be satisfiable.

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 32 / 42



Examples

F : (¬P ∨Q) ∧ P ∧ ¬Q

From resolution
(¬P ∨Q) P

Q ,

construct (¬P ∨Q) ∧ P ∧ ¬Q ∧Q. From resolution

¬Q Q

⊥

deduce that F is unsatisfiable.

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 33 / 42



Examples

F : (¬P ∨Q) ∧ ¬Q)

The resolution procedure yields

(¬P ∨Q) ∧ ¬Q ∧ ¬P

No further resolutions are possible. F is satisfiable.

A satisfying interpretation:

I : {P 7→ false, Q 7→ false}

A CNF formula that does not contain the clause ⊥ and to which no
more resolutions are applicable represents all possible satisfying
interpretations.

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 34 / 42



DPLL

The Davis-Putnam-Logemann-Loveland algorithm (DPLL) combines
the enumerative search and a restricted form of resolution, called unit
resolution:

l C[¬l]
C[⊥]

where l is a literal (l = P or l = ¬P ).

The process of applying this resolution as much as possible is called
Boolean constraint propagation (BCP).

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 35 / 42



BCP Example

F : (P ) ∧ (¬P ∨Q) ∧ (R ∨ ¬Q ∨ S)

Apply unit resolution
P (¬P ∨Q)

Q

to produce F ′ : Q ∧ (R ∨ ¬Q ∨ S). Applying unit resolution

Q R ∨ ¬Q ∨ S
R ∨ S

produces F ′′ : R ∨ S, ending this round of BCP.

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 36 / 42



DPLL

DPLL is similar to SAT, except that it begins by applying BCP:

let rec DPLL F =
let F ′ = BCP(F ) in
if F ′ = > then true
else if F ′ = ⊥ then false
else

let P = Choose(vars(F ′)) in
(DPLL F ′{P 7→ >}) ∨ (DPLL F ′{P 7→ ⊥})

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 37 / 42



Pure Literal Propagation (PLP)

If variable P appears only positively or only negatively in F , remove
all clauses containing an instance of P .

I If P appears only positively (i.e. no ¬P in F ), replace P by >.
I If P appears only negatively (i.e. no P in F ), replace P by ⊥.

The resulting formula F ′ is equisatisfiable to F .

When only such pure variables remain, the formula must be
satisfiable. A full interpretation can be constructed by setting each
variable’s value based on whether it appears only positively (true) or
only negatively (false).

Example) F : (¬P ∨Q) ∧ (R ∨ ¬Q ∨ S).

P appears only negatively in F

F ′ : (R ∨ ¬Q ∨ S)

R and S appear only positively in F

F ′ : (¬P ∨Q)

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 38 / 42



DPLL with PLP

let rec DPLL F =
let F ′ = PLP(BCP(F )) in
if F ′ = > then true
else if F ′ = ⊥ then false
else

let P = Choose(vars(F ′)) in
(DPLL F ′{P 7→ >}) ∨ (DPLL F ′{P 7→ ⊥})

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 39 / 42



Example 1

F : P ∧ (¬P ∨Q) ∧ (R ∨ ¬Q ∨ S)

1 Applying BCP produces
F ′′ : R ∨ S

2 All variables occur positively, so F is satisfiable.

3 A satisfying interpretation:

{P 7→ true, Q 7→ true, R 7→ true, S 7→ true}

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 40 / 42



Example 2

F : (¬P ∨Q ∨R) ∧ (¬Q ∨R) ∧ (¬Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ ¬R)

No BCP and PLP are applicable.

Choose Q to branch on:

F{Q 7→ >} : R ∧ (¬R) ∧ (P ∨ ¬R)

The unit resolution with R and ¬R deduces ⊥, finishing this branch.

On the other branch for Q:

F{Q 7→ ⊥} : (¬P ∨R)

P and R are pure, so the formula is satisfiable. A satisfying
interpretation:

I : {P 7→ false, Q 7→ false, R 7→ true}

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 41 / 42



Summary

Syntax and semantics of propositional logic

Satisfiability and validity

Equivalence, implications, and equisatisfiability

Substitution

Normal forms: NNF, DNF, CNF

Decision procedures for satisfiability

Hakjoo Oh AAA615 2017 Fall, Lecture 1 September 17, 2017 42 / 42


