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Basic Information

Instructor: Hakjoo Oh

Position: Assistant professor in CS, Korea University

Expertise: Programming Languages

Office: 616c, Science Library

Email: hakjoo_oh@korea.ac.kr

Office Hours: 1:00pm–3:00pm Mondays and Wednesdays (by
appointment)
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Motivation: Unsafe Software

Software errors cost the U.S. economy $60 billion every year.

(1996) Explosion of the Arian-5 rocket. Cost: $8 billion

(1998) NASA’s Mars climate orbiter lost in space. Cost: $125 million

(2000) Accidents in radiation therapy system. Cost: 8 patients died

(2007) Air control system shutdown in LA airport. Cost: 6,000
passengers stranded

(2012) Glitch in trading software of Knight Captal. Cost: $440 million

(2014) Airbag malfunction of Nissan vehicles. Cost: $1 million
vehicles recalled

. . . Countless software projects failed in history.
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Current Technologies for Safe Software

Very primitive the status-quo:

Code review

Testing

Debugging

Simulation, ...

⇒ Manual, ad-hoc, incomplete, expensive, and postmortem.
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About This Course

Cutting-edge technologies for building software in safer and easier ways:

Program verification

Program analysis

Program synthesis

Program repair
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Program Verification

Techniques for verifying programs according to specifications:

@input : >
@output : sorted(rv, 0, |rv| − 1)
bool BubbleSort (int a[]) {

int[] a := a0

for (int i := |a| − 1; i > 0; i := i− 1) {
for (int j := 0; j < i; j := j + 1) {

if (a[j] > a[j + 1]) {
int t := a[j];
int a[j] := a[j + 1];
int a[j + 1] := t;

}
}

}
return a;

}
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Program Analysis

Automated techniques for analyzing program behaviors

typically interested in weaker properties than verification

static vs. dynamic approaches

Example:

Aims to detect memory errors in C programs such as buffer-overrun,
memory leak, null-dereference, etc

fully automated, guaranteed to find all bugs
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Program Synthesis

Techniques for generating programs from specifications:
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Program Repair

Automated techniques for fixing software errors:

buggy program fixed program
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Topics

Computational logic and its application to formal approaches in software
engineering, including program verification, analysis, synthesis, and repair.

Part 1 (Foundations):
I Propositional logic
I First-order logic
I First-order theories
I SAT/SMT solvers

Part 2 (Applications):

I Program verification
I Program analysis
I Program synthesis
I Program repair

Prerequisites: programming language theory and program analysis
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Course Materials

Textbook: Aaron R. Bradley and Zohar Manna. The Calculus of
Computation. Springer.

Materials from related courses:
I Computer-Aided Reasoning for Software. Univ. of Washington

https://courses.cs.washington.edu/courses/cse507/17wi/
I Automated Logical Reasoning. Univ. of Texas at Austin

http://www.cs.utexas.edu/~isil/cs389L/
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Grading

Exam – 30%

Project – 60%
I Goal: apply what you learn and build a prototype programming tool

(analyzer, verifier, synthesizer, patch generator, etc)
I Schedule:

F Proposal (1–2 pages): due 10/31 (Mon) in class
F Demo: 12/4 (Mon) in class
F Paper (–5 pages): due 12/11 (Mon) in class

I Make a team of 1–3 students

Participation – 10%
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Schedule (tentative)

Weeks Topics

Week 1 Propositional Logic
Week 2 Propositional Logic
Week 3 CDCL SAT solvers
Week 4 Applications of SAT Solvers
Week 5 First-order Logic
Week 6 First-order theories
Week 7 SMT Solvers
Week 8 Program verification
Week 9 Program verification
Week 10 Exam
Week 11 Program analysis
Week 12 Program analysis
Week 13 Program synthesis
Week 14 Program repair
Week 15 Project demo
Week 16 Wrap up
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