
AAA615: Formal Methods

Lecture 0 — Course Overview

Hakjoo Oh
2017 Fall

Hakjoo Oh AAA615 2017 Fall, Lecture 0 September 3, 2017 1 / 13

Basic Information

Instructor: Hakjoo Oh

Position: Assistant professor in CS, Korea University

Expertise: Programming Languages

Office: 616c, Science Library

Email: hakjoo_oh@korea.ac.kr

Office Hours: 1:00pm–3:00pm Mondays and Wednesdays (by
appointment)

Hakjoo Oh AAA615 2017 Fall, Lecture 0 September 3, 2017 2 / 13

Motivation: Unsafe Software

Software errors cost the U.S. economy $60 billion every year.

(1996) Explosion of the Arian-5 rocket. Cost: $8 billion

(1998) NASA’s Mars climate orbiter lost in space. Cost: $125 million

(2000) Accidents in radiation therapy system. Cost: 8 patients died

(2007) Air control system shutdown in LA airport. Cost: 6,000
passengers stranded

(2012) Glitch in trading software of Knight Captal. Cost: $440 million

(2014) Airbag malfunction of Nissan vehicles. Cost: $1 million
vehicles recalled

. . . Countless software projects failed in history.

Hakjoo Oh AAA615 2017 Fall, Lecture 0 September 3, 2017 3 / 13

Current Technologies for Safe Software

Very primitive the status-quo:

Code review

Testing

Debugging

Simulation, ...

⇒ Manual, ad-hoc, incomplete, expensive, and postmortem.

Hakjoo Oh AAA615 2017 Fall, Lecture 0 September 3, 2017 4 / 13

About This Course

Cutting-edge technologies for building software in safer and easier ways:

Program verification

Program analysis

Program synthesis

Program repair

Hakjoo Oh AAA615 2017 Fall, Lecture 0 September 3, 2017 5 / 13

Program Verification

Techniques for verifying programs according to specifications:

@input : >
@output : sorted(rv, 0, |rv| − 1)
bool BubbleSort (int a[]) {

int[] a := a0

for (int i := |a| − 1; i > 0; i := i− 1) {
for (int j := 0; j < i; j := j + 1) {

if (a[j] > a[j + 1]) {
int t := a[j];
int a[j] := a[j + 1];
int a[j + 1] := t;

}
}

}
return a;

}

Hakjoo Oh AAA615 2017 Fall, Lecture 0 September 3, 2017 6 / 13

Program Analysis

Automated techniques for analyzing program behaviors

typically interested in weaker properties than verification

static vs. dynamic approaches

Example:

Aims to detect memory errors in C programs such as buffer-overrun,
memory leak, null-dereference, etc

fully automated, guaranteed to find all bugs

Hakjoo Oh AAA615 2017 Fall, Lecture 0 September 3, 2017 7 / 13

Program Synthesis

Techniques for generating programs from specifications:

Hakjoo Oh AAA615 2017 Fall, Lecture 0 September 3, 2017 8 / 13

Program Repair

Automated techniques for fixing software errors:

buggy program fixed program

Hakjoo Oh AAA615 2017 Fall, Lecture 0 September 3, 2017 9 / 13

Topics

Computational logic and its application to formal approaches in software
engineering, including program verification, analysis, synthesis, and repair.

Part 1 (Foundations):
I Propositional logic
I First-order logic
I First-order theories
I SAT/SMT solvers

Part 2 (Applications):

I Program verification
I Program analysis
I Program synthesis
I Program repair

Prerequisites: programming language theory and program analysis

Hakjoo Oh AAA615 2017 Fall, Lecture 0 September 3, 2017 10 / 13

Course Materials

Textbook: Aaron R. Bradley and Zohar Manna. The Calculus of
Computation. Springer.

Materials from related courses:
I Computer-Aided Reasoning for Software. Univ. of Washington

https://courses.cs.washington.edu/courses/cse507/17wi/
I Automated Logical Reasoning. Univ. of Texas at Austin

http://www.cs.utexas.edu/~isil/cs389L/

Hakjoo Oh AAA615 2017 Fall, Lecture 0 September 3, 2017 11 / 13

https://courses.cs.washington.edu/courses/cse507/17wi/
http://www.cs.utexas.edu/~isil/cs389L/

Grading

Exam – 30%

Project – 60%
I Goal: apply what you learn and build a prototype programming tool

(analyzer, verifier, synthesizer, patch generator, etc)
I Schedule:

F Proposal (1–2 pages): due 10/31 (Mon) in class
F Demo: 12/4 (Mon) in class
F Paper (–5 pages): due 12/11 (Mon) in class

I Make a team of 1–3 students

Participation – 10%

Hakjoo Oh AAA615 2017 Fall, Lecture 0 September 3, 2017 12 / 13

Schedule (tentative)

Weeks Topics

Week 1 Propositional Logic
Week 2 Propositional Logic
Week 3 CDCL SAT solvers
Week 4 Applications of SAT Solvers
Week 5 First-order Logic
Week 6 First-order theories
Week 7 SMT Solvers
Week 8 Program verification
Week 9 Program verification
Week 10 Exam
Week 11 Program analysis
Week 12 Program analysis
Week 13 Program synthesis
Week 14 Program repair
Week 15 Project demo
Week 16 Wrap up

Hakjoo Oh AAA615 2017 Fall, Lecture 0 September 3, 2017 13 / 13

