Safety Proofs of Simple Type System

AAA551: Programming Language Theory

Korea University

1. Simply Typed Lambda Calculus

Syntax We consider lambda calculus with boolean types and conditional expressions:

t	::=	x	variable
		$\lambda x: T.t$	abstraction
		t t	application
		true false	boolean values
		$\texttt{if} \ t \ t \ t$	conditional expression

The values in this language are terms defined by the following grammar:

$$v ::= \texttt{true} \mid \texttt{false} \mid \lambda x : T.t$$

Types include primitive boolean types and function types:

$$T ::= Bool \mid T \to T$$

Evaluation Rules

$$\frac{t_1 \rightarrow t_1'}{t_1 t_2 \rightarrow t_1' t_2} \text{ E-APP1}$$
$$\frac{t_2 \rightarrow t_2'}{v_1 t_2 \rightarrow v_1 t_2'} \text{ E-APP2}$$

$$\overline{(\lambda x:T.t_{12}) v_2 \rightarrow [x \mapsto v_2]t_{12}}$$
 E-APPABS

if true
$$t_2 t_3 \rightarrow t_2$$
 E-IFTRUE

$$\overline{\text{if false } t_2 \ t_3 \rightarrow t_3} \ \text{E-IFFALSE}$$

$$\frac{t_1 \rightarrow t_1'}{\operatorname{if} t_1 t_2 t_3 \rightarrow \operatorname{if} t_1' t_2 t_3} \ \operatorname{E-IF}$$

Typing Rules

$$\frac{\Gamma(x) = T}{\Gamma \vdash x : T} \text{ T-VAR}$$

$$\frac{\Gamma[x \mapsto T_1] \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1 \cdot t_2 : T_1 \to T_2} \text{ T-Abs}$$

$$\frac{\Gamma \vdash t_1: T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_2: T_{11}}{\Gamma \vdash t_1 \ t_2: T_{12}} \ \text{T-APP}$$

$$\overline{\Gamma \vdash \texttt{true} : Bool} \quad \texttt{T-TRUE}$$

$$\overline{\Gamma \vdash \mathtt{false} : Bool}$$
 T-FALSE

$$\frac{\Gamma \vdash t_1:Bool \quad \Gamma \vdash t_2:T \quad \Gamma \vdash t_3:T}{\Gamma \vdash \operatorname{if} t_1 t_2 t_3:T} \ \operatorname{T-IF}$$

2. Safety Proofs

Theorem 1 (Type Safety). Suppose t is a closed term. If $\vdash t : T$, then t does not get stuck during evaluation. Furthermore, if t reaches a value v, then v is of the T type.

Proof. Immediate from Lemma 1 and Lemma 4.

Lemma 1 (Progress). Suppose t is a closed term. If t is well-typed (i.e., $\vdash t : T$ for some T), then either t is a value or there is some t' with $t \rightarrow t'$:

$$\vdash t:T \implies t \text{ is a value or } \exists t'. t \to t'$$

Proof. By structural induction on t.

- $t \in \{\texttt{true}, \texttt{false}\}$: Immediate, since t is a value.
- $t = \lambda x : T.t_1$: Immediate, since t is a value.
- t = x: Cannot occur (because t is closed).
- $t = t_1 t_2$: What we have to show in this case is as follows:

$$\vdash t_1 t_2 : T \implies \exists t'. (t_1 t_2) \rightarrow t'$$

First, by typing rule T-APP, we know that t_1 and t_2 are well-typed:

$$\frac{\Gamma \vdash t_1 : T_{11} \to T_{12} \quad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 \ t_2 : T_{12}}$$

where $T = T_{12}$. By the induction hypothesis (IH), either t_1 is a value or else it can make a step of evaluation, and likewise t_2 :

$$t_1$$
 is a value or $\exists t'_1. t_1 \rightarrow t'_1 \quad \cdots$ IH1
 t_2 is a value or $\exists t'_2. t_2 \rightarrow t'_2 \quad \cdots$ IH2

 t_2 is a value of $\exists t_2, t_2 \rightarrow t_2$.

There are three cases to consider.

• t_1 is not a value: by IH1, there exists t'_1 such that

 $t_1 \to t_1'$

and E-APP1 applies to *t*:

$$t_1 t_2 \to t_1' t_2$$

• t_1 is a value and t_2 is not a value: by IH2, there exists t'_2 such that

$$t_2 \rightarrow t_2'$$

and E-APP2 applies to t:

 $t_1 t_2 \to t_1 t_2'$

• Both t_1 and t_2 are values: because t_1 is well-typed as function abstraction($\vdash t_1 : T_{11} \rightarrow T_{12}$), t_1 has the form $\lambda x : T_{11}.t_{12}$ and so rule E-APPABS applies to t.

• $t = \text{if } t_1 t_2 t_3$: By typing rule T-IF

$$\frac{\Gamma \vdash t_1: Bool \quad \Gamma \vdash t_2: T \quad \Gamma \vdash t_3: T}{\Gamma \vdash \operatorname{if} t_1 \ t_2 \ t_3: T}$$

and induction hypothesis, either t_1 is a value or else there is some t'_1 such that $t_1 \rightarrow t'_1$.

- t_1 is a value: t_1 is either true or false, in which either E-IFTRUE or E-IFFALSE applies to t.
- $t_1 \rightarrow t'_1$: E-IF applies to t and therefore $t \rightarrow \text{if } t'_1 t_2 t_3$.

Lemma 2 (Weakening). If $\Gamma \vdash t : T$ and $x \notin dom(\Gamma)$, then $\Gamma[x \mapsto S] \vdash t : T$ for any S.

Proof. (exercise 1) Straightforward induction on
$$t$$
.

Lemma 3 (Preservation under Substitution). If $\Gamma[x \mapsto S] \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.

Proof. By induction on a derivation of the statement $\Gamma[x \mapsto S] \vdash t: T$.

• t = z: In this case, by typing rule T-VAR, we have

$$\Gamma[x \mapsto S](z) = T$$

- There are two cases to consider:
 - z = x: We have

$$\Gamma[x \mapsto S] \vdash x : S \qquad [x \mapsto s]x = s$$

and to show is $\Gamma \vdash s : S$, which is among the assumptions of the lemma.

• $z \neq x$: In this case, we have

$$\Gamma[x \mapsto S] \vdash z : T \qquad [x \mapsto s]z = z$$

and to show is $\Gamma \vdash z : T$, which is immediate.

• $t = \lambda y : T_2 \cdot t_1$: In this case, we have

$$\Gamma[x \mapsto S][y \mapsto T_2] \vdash t_1 : T_1 \qquad T = T_2 \to T_1$$

where we assume that y is fresh (i.e., $y \notin \{x\} \cup dom(\Gamma)$). Because typing holds for all permutation of the type environment, we also have

$$\Gamma[y \mapsto T_2][x \mapsto S] \vdash t_1 : T_1$$

By weakening the assumption $(\Gamma \vdash s:S)$ of this lemma, we have

 $\Gamma[y \mapsto T_2] \vdash s : S$

Now, we apply the induction hypothesis and get

 $\Gamma[y \mapsto T_2] \vdash [x \mapsto s]t_1 : T_1$

We apply T-ABS and have

$$\Gamma \vdash \lambda y : T_2 [x \mapsto s] t_1 : T_2 \to T_1$$

which, by the definition of the substitution, implies

 $\Gamma \vdash [x \mapsto s](\lambda y : T_2.t_1) : T_2 \to T_1$

as desired.

• $t = t_1 t_2$: In this case, we have

$$\Gamma[x \mapsto S] \vdash t_1 : T_2 \to T_1, \quad \Gamma[x \mapsto S] \vdash t_2 : T_2, \quad T = T_1$$

By the induction hypothesis,

$$\Gamma[x \mapsto S] \vdash [x \mapsto s]t_1 : T_2 \to T_1, \quad \Gamma[x \mapsto S] \vdash [x \mapsto s]t_2 : T_2,$$

By T-APP,

 $\Gamma \vdash [x \mapsto s]t_1 \ [x \mapsto s]t_2 : T$

which, by the definition of substitution, implies

$$\Gamma \vdash [x \mapsto s](t_1 \ t_2) : T$$

as desired.

• Other cases: (exercise 2)

Lemma 4 (Preservation). If $\Gamma \vdash t : T$ and $t \to t'$, then $\Gamma \vdash t' : T$.

Proof. By structural induction on t.

• t = x or $t = \lambda x : T.t_1$: Vacuously satisfied.

•
$$t = t_1 t_2$$
: In this case, we have

$$\Gamma \vdash t_1 : T_{11} \to T_{12} \qquad \Gamma \vdash t_2 : T_{11} \qquad T = T_{12}$$

Looking at the evaluation rules, we find that there are three possible cases for $t \rightarrow t'$:

• E-APP1: In this case $t' = t'_1 t_2$ where $t_1 \rightarrow t'_1$ and the induction hypothesis is

$$\Gamma \vdash t_1' : T_{11} \to T_{12}$$

Combining this with $\Gamma \vdash t_2: T_{11},$ we can apply T-APP to conclude that $\Gamma \vdash t': T$

E-APP2: Similar.

 $t_1 = \lambda x : T_{11} \cdot t_{12}$ $t_2 = v_2$ $t' = [x \mapsto v_2]t_{12}$

We also have

$$\Gamma[x \mapsto T_{11}] \vdash t_{12} : T_{12}$$

and, by
$$\Gamma \vdash v_2 : T_{11}$$
 and the substitution lemma, we obtain
 $\Gamma \vdash t' : T_{12}$

• Other cases: (exercise 3)