
Safety Proofs of Simple Type System

AAA551: Programming Language Theory
Korea University

1. Simply Typed Lambda Calculus
Syntax We consider lambda calculus with boolean types and
conditional expressions:

t ::= x variable
| λx : T.t abstraction
| t t application
| true | false boolean values
| if t t t conditional expression

The values in this language are terms defined by the following
grammar:

v ::= true | false | λx : T.t

Types include primitive boolean types and function types:

T ::= Bool | T → T

Evaluation Rules
t1 → t′1

t1 t2 → t′1 t2
E-APP1

t2 → t′2

v1 t2 → v1 t
′
2

E-APP2

(λx : T.t12) v2 → [x 7→ v2]t12
E-APPABS

if true t2 t3 → t2
E-IFTRUE

if false t2 t3 → t3
E-IFFALSE

t1 → t′1

if t1 t2 t3 → if t′1 t2 t3
E-IF

Typing Rules
Γ(x) = T

Γ ` x : T
T-VAR

Γ[x 7→ T1] ` t2 : T2

Γ ` λx : T1.t2 : T1 → T2
T-ABS

Γ ` t1 : T11 → T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
T-APP

Γ ` true : Bool
T-TRUE

Γ ` false : Bool
T-FALSE

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 t2 t3 : T
T-IF

2. Safety Proofs
Theorem 1 (Type Safety). Suppose t is a closed term. If ` t : T ,
then t does not get stuck during evaluation. Furthermore, if t
reaches a value v, then v is of the T type.

Proof. Immediate from Lemma 1 and Lemma 4.

Lemma 1 (Progress). Suppose t is a closed term. If t is well-typed
(i.e., ` t : T for some T), then either t is a value or there is some
t′ with t→ t′:

` t : T =⇒ t is a value or ∃t′. t→ t′

Proof. By structural induction on t.

• t ∈ {true, false}: Immediate, since t is a value.
• t = λx : T.t1: Immediate, since t is a value.
• t = x: Cannot occur (because t is closed).
• t = t1 t2: What we have to show in this case is as follows:

` t1 t2 : T =⇒ ∃t′. (t1 t2)→ t′

First, by typing rule T-APP, we know that t1 and t2 are well-
typed:

Γ ` t1 : T11 → T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

where T = T12. By the induction hypothesis (IH), either t1 is a
value or else it can make a step of evaluation, and likewise t2:

t1 is a value or ∃t′1. t1 → t′1 · · · IH1

t2 is a value or ∃t′2. t2 → t′2 · · · IH2

There are three cases to consider.
t1 is not a value: by IH1, there exists t′1 such that

t1 → t′1

and E-APP1 applies to t:

t1 t2 → t′1 t2

t1 is a value and t2 is not a value: by IH2, there exists t′2
such that

t2 → t′2
and E-APP2 applies to t:

t1 t2 → t1 t
′
2

Both t1 and t2 are values: because t1 is well-typed as func-
tion abstraction(` t1 : T11 → T12), t1 has the form
λx : T11.t12 and so rule E-APPABS applies to t.

• t = if t1 t2 t3: By typing rule T-IF

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 t2 t3 : T

and induction hypothesis, either t1 is a value or else there is
some t′1 such that t1 → t′1.

1 2016/5/29

t1 is a value: t1 is either true or false, in which either
E-IFTRUE or E-IFFALSE applies to t.
t1 → t′1: E-IF applies to t and therefore t→ if t′1 t2 t3.

Lemma 2 (Weakening). If Γ ` t : T and x 6∈ dom(Γ), then
Γ[x 7→ S] ` t : T for any S.

Proof. (exercise 1) Straightforward induction on t.

Lemma 3 (Preservation under Substitution). If Γ[x 7→ S] ` t : T
and Γ ` s : S, then Γ ` [x 7→ s]t : T .

Proof. By induction on a derivation of the statement Γ[x 7→ S] `
t : T .

• t = z: In this case, by typing rule T-VAR, we have

Γ[x 7→ S](z) = T

There are two cases to consider:
z = x: We have

Γ[x 7→ S] ` x : S [x 7→ s]x = s

and to show is Γ ` s : S, which is among the assumptions
of the lemma.
z 6= x: In this case, we have

Γ[x 7→ S] ` z : T [x 7→ s]z = z

and to show is Γ ` z : T , which is immediate.
• t = λy : T2.t1: In this case, we have

Γ[x 7→ S][y 7→ T2] ` t1 : T1 T = T2 → T1

where we assume that y is fresh (i.e., y 6∈ {x} ∪ dom(Γ)). Be-
cause typing holds for all permutation of the type environment,
we also have

Γ[y 7→ T2][x 7→ S] ` t1 : T1

By weakening the assumption (Γ ` s : S) of this lemma, we
have

Γ[y 7→ T2] ` s : S

Now, we apply the induction hypothesis and get

Γ[y 7→ T2] ` [x 7→ s]t1 : T1

We apply T-ABS and have

Γ ` λy : T2.[x 7→ s]t1 : T2 → T1

which, by the definition of the substitution, implies

Γ ` [x 7→ s](λy : T2.t1) : T2 → T1

as desired.
• t = t1 t2: In this case, we have

Γ[x 7→ S] ` t1 : T2 → T1, Γ[x 7→ S] ` t2 : T2, T = T1

By the induction hypothesis,

Γ[x 7→ S] ` [x 7→ s]t1 : T2 → T1, Γ[x 7→ S] ` [x 7→ s]t2 : T2,

By T-APP,
Γ ` [x 7→ s]t1 [x 7→ s]t2 : T

which, by the definition of substitution, implies

Γ ` [x 7→ s](t1 t2) : T

as desired.
• Other cases: (exercise 2)

Lemma 4 (Preservation). If Γ ` t : T and t→ t′, then Γ ` t′ : T .

Proof. By structural induction on t.

• t = x or t = λx : T.t1: Vacuously satisfied.
• t = t1 t2: In this case, we have

Γ ` t1 : T11 → T12 Γ ` t2 : T11 T = T12

Looking at the evaluation rules, we find that there are three
possible cases for t→ t′:

E-APP1: In this case t′ = t′1 t2 where t1 → t′1 and the
induction hypothesis is

Γ ` t′1 : T11 → T12

Combining this with Γ ` t2 : T11, we can apply T-APP to
conclude that Γ ` t′ : T
E-APP2: Similar.
E-APPABS: In this case we have

t1 = λx : T11.t12 t2 = v2 t′ = [x 7→ v2]t12

We also have

Γ[x 7→ T11] ` t12 : T12

and, by Γ ` v2 : T11 and the substitution lemma, we obtain

Γ ` t′ : T12

• Other cases: (exercise 3)

2 2016/5/29

