AAA551: Programming Language Theory Inductive Definitions

Hakjoo Oh
2016 Spring

Inductive Definitions

- A technique for formally defining a set.
- The set is defined in terms of itself.
- The only way of defining an infinite set by a finite means.

Example

Definition

A natural number \boldsymbol{n} is in \boldsymbol{S} if and only if
(1) $n=0$, or
(2) $n-3 \in S$.

What is the set \boldsymbol{S} ?

Example

Definition

A natural number \boldsymbol{n} is in \boldsymbol{S} if and only if
(1) $n=0$, or
(2) $n-3 \in S$.

What is the set S ?

- $\{0,3,6,9, \ldots\} \subseteq S$

Example

Definition

A natural number \boldsymbol{n} is in \boldsymbol{S} if and only if
(1) $n=0$, or
(2) $n-3 \in S$.

What is the set S ?

- $\{0,3,6,9, \ldots\} \subseteq S$
- $\{0,3,6,9, \ldots\} \supseteq S$

A Bottom-up Version

Definition

S is the smallest set such that $S \subseteq \mathbb{N}$ and S satisfies the following two conditions:
(0) $0 \in S$, and
(2) if $n \in S$, then $n+3 \in S$.

What is the set S ?

A Bottom-up Version

Definition

S is the smallest set such that $S \subseteq \mathbb{N}$ and S satisfies the following two conditions:
(1) $0 \in S$, and
(2) if $n \in S$, then $n+3 \in S$.

What is the set \boldsymbol{S} ?

- If the two conditions are satisfied, $\{\mathbf{0}, \mathbf{3}, \mathbf{6}, \mathbf{9}, \ldots\} \subseteq \boldsymbol{S}$.

A Bottom-up Version

Definition

S is the smallest set such that $S \subseteq \mathbb{N}$ and S satisfies the following two conditions:
(1) $0 \in S$, and
(2) if $n \in S$, then $n+3 \in S$.

What is the set \boldsymbol{S} ?

- If the two conditions are satisfied, $\{\mathbf{0}, \mathbf{3}, \mathbf{6}, \mathbf{9}, \ldots\} \subseteq \boldsymbol{S}$.
- \boldsymbol{S} is the smallest such a set.
- The smallest set is unique.

Rules of Inference

$$
\frac{A}{B}
$$

- A: hypothesis (antecedent)
- B: conclusion (consequent)
- "if \boldsymbol{A} is true then \boldsymbol{B} is also true".
- \bar{B} : axiom.

Defining a Set by Rules of Inferences

Definition

$$
\begin{gathered}
\overline{0} \in S \\
\frac{n \in S}{(n+3) \in S}
\end{gathered}
$$

Interpret the rules as follows:
"A natural number \boldsymbol{n} is in \boldsymbol{S} iff $\boldsymbol{n} \in \boldsymbol{S}$ can be derived from the axiom by applying the inference rules finitely many times"

Defining a Set by Rules of Inferences

Definition

$$
\begin{gathered}
\overline{0} \in S \\
\frac{n \in S}{(n+3) \in S}
\end{gathered}
$$

Interpret the rules as follows:
"A natural number \boldsymbol{n} is in \boldsymbol{S} iff $\boldsymbol{n} \in \boldsymbol{S}$ can be derived from the axiom by applying the inference rules finitely many times"
ex) $\mathbf{3} \in S$ because

$\overline{\mathbf{0} \in \boldsymbol{S}}$ the axiom

Defining a Set by Rules of Inferences

Definition

$$
\begin{gathered}
\overline{0} \in S \\
\frac{n \in S}{(n+3) \in S}
\end{gathered}
$$

Interpret the rules as follows:
"A natural number \boldsymbol{n} is in \boldsymbol{S} iff $\boldsymbol{n} \in \boldsymbol{S}$ can be derived from the axiom by applying the inference rules finitely many times"
ex) $\mathbf{3} \in S$ because

$$
\begin{aligned}
& \overline{\mathbf{0 \in S}} \\
& \overline{3 \in S}
\end{aligned} \text { the axiom }
$$

Note that this interpretation enforces that S is the smallest set closed under the inference rules.

Summary

In inductive definitions, a set is defined in terms of itself. Three styles:

- Top-down
- Bottom-up
- Rules of inference

In PL, we mainly use the rules-of-inference method.

Exercises

(1) What set is defined by the following inductive rules?

$$
\overline{3} \quad \frac{x \quad y}{x+y}
$$

Exercises

(1) What set is defined by the following inductive rules?

$$
\overline{3} \quad \frac{x}{x+y}
$$

(2) What set is defined by the following inductive rules?

$$
\overline{()} \quad \frac{s}{(s)} \quad \frac{s}{s s}
$$

Exercises

(1) What set is defined by the following inductive rules?

$$
\overline{3} \quad \frac{x y}{x+y}
$$

(2) What set is defined by the following inductive rules?

$$
\overline{()} \quad \frac{s}{(s)} \quad \frac{s}{s s}
$$

(3) Define the following set as rules of inference:

$$
S=\{a, b, a a, a b, b a, b b, a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b, \ldots\}
$$

Exercises

(1) What set is defined by the following inductive rules?

$$
\overline{3} \quad \frac{x}{x+y}
$$

(2) What set is defined by the following inductive rules?

$$
\overline{()} \quad \frac{s}{(s)} \quad \frac{s}{s s}
$$

(3) Define the following set as rules of inference:

$$
S=\{a, b, a a, a b, b a, b b, a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b, \ldots\}
$$

(9) Define the following set as rules of inference:

$$
S=\left\{x^{n} y^{n+1} \mid n \in \mathbb{N}\right\}
$$

Contents

- More examples of inductive definitions
- natural numbers, strings, booleans
- lists, binary trees
- arithmetic expressions, propositional logic
- Structural induction
- three example proofs

Natural Numbers

The set of natural numbers:

$$
\mathbb{N}=\{0,1,2,3, \ldots\}
$$

Natural Numbers

The set of natural numbers:

$$
\mathbb{N}=\{0,1,2,3, \ldots\}
$$

is inductively defined:

$$
\overline{0} \quad \frac{n}{n+1}
$$

Natural Numbers

The set of natural numbers:

$$
\mathbb{N}=\{0,1,2,3, \ldots\}
$$

is inductively defined:

$$
\overline{0} \quad \frac{n}{n+1}
$$

The inference rules can be expressed by a grammar:

$$
n \rightarrow 0 \mid n+1
$$

Interpretation:

- 0 is a natural number.
- If \boldsymbol{n} is a natural number then so is $\boldsymbol{n}+\mathbf{1}$.

Strings

The set of strings over alphabet $\{\mathrm{a}, \ldots, \mathrm{z}\}$, e.g., $\epsilon, \mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}, \mathrm{aa}, \mathrm{ab}$, ..., az, ba, ... az, aaa, ..., zzz, and so on.

Strings

The set of strings over alphabet $\{a, \ldots, z\}$, e.g., $\boldsymbol{\epsilon}, \mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}, \mathrm{aa}, \mathrm{ab}$, $\ldots, a z, b a, \ldots$ az, aaa, ..., zzz, and so on. Inference rules:

$$
\begin{array}{lllll}
\bar{\epsilon} & \frac{\alpha}{\mathrm{a} \alpha} & \frac{\alpha}{\mathrm{~b} \alpha} & \ldots & \frac{\alpha}{\mathrm{z} \alpha}
\end{array}
$$

Strings

The set of strings over alphabet $\{a, \ldots, z\}$, e.g., $\boldsymbol{\epsilon}, \mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}, \mathrm{aa}, \mathrm{ab}$, $\ldots, a z, b a, \ldots a z, a a a, \ldots, z z z$, and so on. Inference rules:

$$
\begin{array}{lllll}
\bar{\epsilon} & \frac{\alpha}{\mathrm{a} \alpha} & \frac{\alpha}{\mathrm{~b} \alpha} & \ldots & \frac{\alpha}{\mathrm{z} \alpha}
\end{array}
$$

or simply,

$$
\bar{\epsilon} \quad \frac{\boldsymbol{\alpha}}{\boldsymbol{x} \boldsymbol{\alpha}} x \in\{\mathrm{a}, \ldots, \mathrm{z}\}
$$

Strings

The set of strings over alphabet $\{\mathrm{a}, \ldots, \mathrm{z}\}$, e.g., $\epsilon, \mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}, \mathrm{aa}, \mathrm{ab}$, $\ldots, a z, b a, \ldots a z, a a a, \ldots, z z z$, and so on. Inference rules:

$$
\begin{array}{lllll}
\bar{\epsilon} & \frac{\alpha}{\mathrm{a} \alpha} & \frac{\alpha}{\mathrm{~b} \alpha} & \ldots & \frac{\alpha}{\mathrm{z} \alpha}
\end{array}
$$

or simply,

$$
\bar{\epsilon} \quad \frac{\boldsymbol{\alpha}}{\boldsymbol{x} \boldsymbol{\alpha}} \boldsymbol{x} \in\{\mathrm{a}, \ldots, \mathrm{z}\}
$$

In grammar:

$$
\alpha \quad \boldsymbol{\rightarrow} \quad \epsilon \quad . \quad(x \in\{\mathrm{a}, \ldots, \mathrm{z}\})
$$

Boolean Values

The set of boolean values:

$$
\mathbb{B}=\{\text { true }, \text { false }\}
$$

Boolean Values

The set of boolean values:

$$
\mathbb{B}=\{\text { true }, \text { false }\}
$$

If a set is finite, just enumerate all of its elements by axioms:

$$
\overline{\text { true }} \quad \overline{\text { false }}
$$

In grammar:

$$
b \rightarrow \text { true } \mid \text { false }
$$

Lists

Examples of lists of integers:
(1) nil
(2) $14 \cdot \mathrm{nil}$
(3) $3 \cdot 14 \cdot$ nil
(1) $-7 \cdot 3 \cdot 14 \cdot$ nil

Lists

Examples of lists of integers:
(1) nil
(2) $14 \cdot \mathrm{nil}$
(3) $3 \cdot 14 \cdot$ nil
(1) $-7 \cdot 3 \cdot 14 \cdot$ nil

Inference rules:

$$
\overline{\text { nil }} \quad \frac{l}{n \cdot l} n \in \mathbb{Z}
$$

In grammar:

$$
\begin{array}{lll}
l & \rightarrow & \text { nil } \\
& & n \cdot l
\end{array} \quad(n \in \mathbb{Z})
$$

Lists

A proof that $-\mathbf{7} \cdot \mathbf{3} \cdot \mathbf{1 4} \cdot$ nil is a list of integers:

$$
\left.\begin{array}{c}
\frac{\overline{\text { nil }}}{} 14 \in \mathbb{Z} \\
\frac{14 \cdot \text { nil }}{3 \cdot 14 \cdot \text { nil }} 3 \in \mathbb{Z} \\
-7 \cdot 3 \cdot 14 \cdot \text { nil }
\end{array}\right]^{\mathbf{3 \cdot 1}} \in \mathbb{Z}
$$

The proof tree is also called derivation tree or deduction tree.

Binary Trees

Examples of binary trees:
(1) leaf
(2) (2, leaf, leaf)
(3) $(1,(2$, leaf, leaf), leaf)
(1) $(1,(2$, leaf, leaf $),(3,(4$, leaf, leaf $)$, leaf $))$

Binary Trees

Examples of binary trees:
(1) leaf
(2) 2, leaf, leaf)
(3) $(1,(2$, leaf, leaf), leaf)
(3) $(1,(2$, leaf, leaf $),(3,(4$, leaf, leaf $)$, leaf $))$

Inference rules:

$$
\overline{\text { leaf }} \quad \frac{t_{1} t_{2}}{\left(n, t_{1}, t_{2}\right)} n \in \mathbb{Z}
$$

In grammar:
$t \rightarrow$ leaf

$$
\mid \quad(n, t, t) \quad(n \in \mathbb{Z})
$$

Binary Trees

A proof that

$$
(1,(2, \text { leaf, leaf }),(3,(4, \text { leaf, leaf }), \text { leaf }))
$$

is a binary tree:

$$
\begin{gathered}
\frac{\overline{\text { leaf }}}{\frac{\overline{\text { leaf }}}{(4, \text { leaf, leaf })} 4 \in \mathbb{Z}} \begin{array}{l}
(1,(2, \text { leaf, leaf }),(3,(4, \text { leaf, leaf }), \text { leaf })) \\
(3 \in \mathbb{Z}) \\
\end{array} \quad 1 \in \mathbb{Z}
\end{gathered}
$$

Binary Trees: a different version

Binary tree examples: $1,(\mathbf{1}, \mathbf{n i l}),(1,2),((1,2)$, nil $),((1,2),(3,4))$.

Binary Trees: a different version

Binary tree examples: $1,(1$, nil $),(1,2),((1,2)$, nil $),((1,2),(3,4))$. Inference rules:

$$
\bar{n} n \in \mathbb{Z} \quad \frac{t}{(t, \mathrm{nil})} \quad \frac{t}{(\mathrm{nil}, t)} \quad \frac{t_{1} t_{2}}{\left(t_{1}, t_{2}\right)}
$$

In grammar:

$$
\begin{array}{lll}
t & \rightarrow & n \quad(n \in \mathbb{Z}) \\
& (t, \text { nil }) \\
\mid & (\text { nil }, t) \\
& (t, t)
\end{array}
$$

A proof that $((1,2),(3, n i l))$ is a binary tree:
$\frac{\overline{1} \quad \overline{2}}{(1,2)} \frac{\overline{3}}{(3, \text { nil })}$

Expressions

Expression examples: $2,-2, \mathbf{1}+\mathbf{2}, \mathbf{1}+(2 *(-3))$, etc.

Expressions

Expression examples: $2,-2, \mathbf{1}+\mathbf{2}, \mathbf{1}+(2 *(-3))$, etc. Inference rules:

$$
\bar{n} n \in \mathbb{Z} \quad \frac{e}{-e} \quad \frac{e_{1} e_{2}}{e_{1}+e_{2}} \quad \frac{e_{1} e_{2}}{e_{1} * e_{2}}
$$

In grammar:

$$
\begin{aligned}
& e \rightarrow \quad n \quad(n \in \mathbb{Z}) \\
&-e \\
& e+e \\
& e * e
\end{aligned}
$$

Example:

$$
\frac{\overline{1} \frac{\overline{2} \frac{\overline{3}}{(-3)}}{(2 *(-3))}}{(1+(2 *(-3)))}
$$

Propositional Logic

Examples:

- $\boldsymbol{T}, \boldsymbol{F}$
- $T \wedge F$
- $T \vee F$
- $(T \wedge F) \wedge(T \vee F)$
- $T \Rightarrow(F \Rightarrow T)$

Propositional Logic

Syntax:

$$
\begin{array}{lll}
f \quad \rightarrow & T \mid F \\
: & \neg f \\
& f \wedge f \\
: & f \vee f \\
& f \Rightarrow f
\end{array}
$$

Semantics ($\llbracket f \rrbracket)$:

$$
\begin{aligned}
\llbracket T \rrbracket & =\text { true } \\
\llbracket \boldsymbol{F} & =\text { false } \\
\llbracket \neg f \rrbracket & =\text { not } \mathbb{f} \rrbracket \\
\llbracket f_{1} \wedge f_{2} \rrbracket & =\llbracket f_{1} \rrbracket \text { andalso } \llbracket f_{2} \rrbracket \\
\llbracket f_{1} \vee f_{2} \rrbracket & =\llbracket f_{1} \rrbracket \text { orelse } \llbracket f_{2} \rrbracket \\
\llbracket f_{1} \Rightarrow f_{2} \rrbracket & =\llbracket f_{1} \rrbracket \text { implies } \llbracket f_{2} \rrbracket
\end{aligned}
$$

Propositional Logic

$$
\begin{aligned}
\llbracket(T \wedge(T \vee F)) \Rightarrow F \rrbracket & =\llbracket T \wedge(T \vee F) \rrbracket \text { implies } \llbracket \boldsymbol{F} \rrbracket \\
& =(\llbracket T \rrbracket \text { andalso } \mathbb{T} \vee \boldsymbol{F} \rrbracket) \text { implies false } \\
& =(\text { true andalso }(\llbracket T \rrbracket \text { orelse } \llbracket \boldsymbol{F} \rrbracket)) \text { implies false } \\
& =(\text { true andalso }(\text { true orelse false })) \text { implies false } \\
& =\text { false }
\end{aligned}
$$

Structural Induction

A technique for proving properties about inductively defined sets.

To prove that a proposition $\boldsymbol{P}(s)$ is true for all structures s, prove the following:
(1) (Base case) \boldsymbol{P} is true on simple structures (those without substructures)
(2) (Inductive case) If \boldsymbol{P} is true on the substructures of s, then it is true on s itself. The assumption is called induction hypothesis (I.H.).

Example 1

Let S be the set defined by the following inference rules:

$$
\overline{3} \quad \frac{x \quad y}{x+y}
$$

Prove that for all $\boldsymbol{x} \in \boldsymbol{S}, \boldsymbol{x}$ is divisible by $\mathbf{3}$.

Example 1

Let \boldsymbol{S} be the set defined by the following inference rules:

$$
\overline{3} \quad \frac{x \quad y}{x+y}
$$

Prove that for all $\boldsymbol{x} \in \boldsymbol{S}, \boldsymbol{x}$ is divisible by $\mathbf{3}$.
Proof. By structural induction.

- (Base case) The base case is when \boldsymbol{x} is $\mathbf{3}$. Obviously, \boldsymbol{x} is divisible by $\mathbf{3}$.

Example 1

Let S be the set defined by the following inference rules:

$$
\overline{3} \quad \frac{x \quad y}{x+y}
$$

Prove that for all $\boldsymbol{x} \in \boldsymbol{S}, \boldsymbol{x}$ is divisible by $\mathbf{3}$.
Proof. By structural induction.

- (Base case) The base case is when \boldsymbol{x} is $\mathbf{3}$. Obviously, \boldsymbol{x} is divisible by $\mathbf{3}$.
- (Inductive case) The induction hypothesis (I.H.) is

$$
\boldsymbol{x} \text { is divisible by } \mathbf{3}, \quad \boldsymbol{y} \text { is divisible by } \mathbf{3} \text {. }
$$

Let $\boldsymbol{x}=\mathbf{3} \boldsymbol{k}_{1}$ and $\boldsymbol{y}=\mathbf{3} \boldsymbol{k}_{2}$.

Example 1

Let S be the set defined by the following inference rules:

$$
\overline{3} \quad \frac{x \quad y}{x+y}
$$

Prove that for all $\boldsymbol{x} \in \boldsymbol{S}, \boldsymbol{x}$ is divisible by $\mathbf{3}$.
Proof. By structural induction.

- (Base case) The base case is when \boldsymbol{x} is $\mathbf{3}$. Obviously, \boldsymbol{x} is divisible by $\mathbf{3}$.
- (Inductive case) The induction hypothesis (I.H.) is

$$
\boldsymbol{x} \text { is divisible by } 3, \quad y \text { is divisible by } 3 \text {. }
$$

Let $x=3 k_{1}$ and $y=3 k_{2}$. Using I.H., we derive

$$
x+y \text { is divisible by } \mathbf{3}
$$

as follows:

$$
\begin{aligned}
x+y & =3 k_{1}+3 k_{2} \quad \cdots \text { by I.H. } \\
& =3\left(k_{1}+3 k_{2}\right)
\end{aligned}
$$

Example 2

Let S be the set defined by the following inference rules:

$$
\overline{()} \quad \frac{x}{(x)} \quad \frac{x}{x y}
$$

Prove that every element of the set has the same number of ('s and)'s.

Example 2

Let S be the set defined by the following inference rules:

$$
\overline{()} \quad \frac{x}{(x)} \quad \frac{x}{x y}
$$

Prove that every element of the set has the same number of ('s and)'s. Proof Restate the claim formally:

$$
\text { If } x \in S \text { then } l(x)=r(x)
$$

where $\boldsymbol{l}(\boldsymbol{x})$ and $\boldsymbol{r}(\boldsymbol{x})$ denote the number of ('s and)'s, respectively.

Example 2

Let \boldsymbol{S} be the set defined by the following inference rules:

$$
\overline{()} \quad \frac{x}{(x)} \quad \frac{x}{x y}
$$

Prove that every element of the set has the same number of ('s and)'s. Proof Restate the claim formally:

$$
\text { If } x \in S \text { then } l(x)=r(x)
$$

where $\boldsymbol{l}(\boldsymbol{x})$ and $\boldsymbol{r}(\boldsymbol{x})$ denote the number of ('s and)'s, respectively. We prove it by structural induction:

- (Base case): The base case is when $\boldsymbol{x}=$ (). Then $l(x)=1=r(x)$.

Example 2

- (Inductive case): There are two inductive cases:

$$
\frac{x}{(x)} \quad \frac{x \quad y}{x y}
$$

Induction hypotheses (I.H.):

$$
l(x)=r(x), \quad l(y)=r(y)
$$

Example 2

- (Inductive case): There are two inductive cases:

$$
\frac{x}{(x)} \quad \frac{x \quad y}{x y}
$$

Induction hypotheses (I.H.):

$$
l(x)=r(x), \quad l(y)=r(y)
$$

- The first case. We prove $l((x))=r((x))$:

$$
\begin{array}{rlrl}
l((x)) & =l(x)+1 & \cdots \text { by definition of } l((x)) \\
& =r(x)+1 & \cdots \text { by I.H. } \\
& =r((x)) & & \cdots \text { by definition of } r((x))
\end{array}
$$

Example 2

- (Inductive case): There are two inductive cases:

$$
\frac{x}{(x)} \quad \frac{x \quad y}{x y}
$$

Induction hypotheses (I.H.):

$$
l(x)=r(x), \quad l(y)=r(y)
$$

- The first case. We prove $l((x))=r((x))$:

$$
\begin{array}{rlrl}
l((x)) & =l(x)+1 & \cdots \text { by definition of } l((x)) \\
& =r(x)+1 \quad \cdots \text { by I.H. } \\
& =r((x)) & \cdots \text { by definition of } r((x))
\end{array}
$$

- The second case. We prove $l(x y)=r(x y)$:

$$
\begin{array}{rll}
l(x y) & =l(x)+l(y) & \cdots \text { by definition of } l(x y) \\
& =r(x)+r(y) & \cdots \text { by l.H. } \\
& =r(x y) & \\
\cdots \text { by definition of } r(x y)
\end{array}
$$

Example 3

Let \boldsymbol{T} be the set of binary trees:

$$
\overline{\text { leaf }} \quad \frac{t_{1} t_{2}}{\left(n, t_{1}, t_{2}\right)} n \in \mathbb{Z}
$$

Prove that for all such trees, the number of leaves is always one more than the number of internal nodes.

Example 3

Let \boldsymbol{T} be the set of binary trees:

$$
\overline{\text { leaf }} \quad \frac{t_{1} t_{2}}{\left(n, t_{1}, t_{2}\right)} n \in \mathbb{Z}
$$

Prove that for all such trees, the number of leaves is always one more than the number of internal nodes.
Proof. Restate the claim more formally:

$$
\text { If } t \in T \text { then } l(t)=i(t)+\mathbf{1}
$$

where $\boldsymbol{l}(\boldsymbol{t})$ and $\boldsymbol{i}(\boldsymbol{t})$ denote the number of leaves and internal nodes, respectively.

Example 3

Let \boldsymbol{T} be the set of binary trees:

$$
\overline{\text { leaf }} \quad \frac{t_{1} t_{2}}{\left(n, t_{1}, t_{2}\right)} n \in \mathbb{Z}
$$

Prove that for all such trees, the number of leaves is always one more than the number of internal nodes.
Proof. Restate the claim more formally:

$$
\text { If } t \in T \text { then } l(t)=i(t)+\mathbf{1}
$$

where $\boldsymbol{l}(\boldsymbol{t})$ and $\boldsymbol{i}(\boldsymbol{t})$ denote the number of leaves and internal nodes, respectively. We prove it by structural induction:

- (Base case): The base case is when $t=$ leaf, where $l(t)=1$ and $i(t)=0$.

Example 3

Let \boldsymbol{T} be the set of binary trees:

$$
\overline{\text { leaf }} \frac{t_{1} t_{2}}{\left(n, t_{1}, t_{2}\right)} n \in \mathbb{Z}
$$

Prove that for all such trees, the number of leaves is always one more than the number of internal nodes.
Proof. Restate the claim more formally:

$$
\text { If } t \in T \text { then } l(t)=i(t)+\mathbf{1}
$$

where $l(t)$ and $\boldsymbol{i}(\boldsymbol{t})$ denote the number of leaves and internal nodes, respectively. We prove it by structural induction:

- (Base case): The base case is when $t=$ leaf, where $l(t)=1$ and $i(t)=0$.
- (Inductive case): The induction hypothesis:

$$
l\left(t_{1}\right)=i\left(t_{1}\right)+1, \quad l\left(t_{2}\right)=i\left(t_{2}\right)+1
$$

Example 3

Let \boldsymbol{T} be the set of binary trees:

$$
\overline{\text { leaf }} \quad \frac{t_{1} t_{2}}{\left(n, t_{1}, t_{2}\right)} n \in \mathbb{Z}
$$

Prove that for all such trees, the number of leaves is always one more than the number of internal nodes.
Proof. Restate the claim more formally:

$$
\text { If } t \in T \text { then } l(t)=i(t)+\mathbf{1}
$$

where $\boldsymbol{l}(\boldsymbol{t})$ and $\boldsymbol{i}(\boldsymbol{t})$ denote the number of leaves and internal nodes, respectively. We prove it by structural induction:

- (Base case): The base case is when $t=$ leaf, where $l(t)=1$ and $i(t)=0$.
- (Inductive case): The induction hypothesis:

$$
l\left(t_{1}\right)=i\left(t_{1}\right)+1, \quad l\left(t_{2}\right)=i\left(t_{2}\right)+1
$$

Using I.H., we prove $l\left(\left(n, t_{1}, t_{2}\right)\right)=i\left(\left(n, t_{1}, t_{2}\right)\right)+1$:

$$
\begin{aligned}
l\left(\left(n, t_{1}, t_{2}\right)\right) & =l\left(t_{1}\right)+l\left(t_{2}\right) \\
& =i\left(t_{1}\right)+1+i\left(t_{2}\right)+1 \quad \text { by induction hypothesis } \\
& =i\left(n, t_{1}, t_{2}\right)+1
\end{aligned}
$$

Summary

- Computer science is full of inductive definitions.
- primitive values: booleans, characters, integers, strings, etc
- compound values: lists, trees, graphs, etc
- language syntax and semantics
- Structural induction
- a general technique for reasoning about inductively defined sets

