AAA551: Programming Language Theory

Inductive Definitions

Hakjoo Oh 2016 Spring

Inductive Definitions

- A technique for formally defining a set.
- The set is defined in terms of itself.
- The only way of defining an infinite set by a finite means.

Example

Definition

A natural number $oldsymbol{n}$ is in $oldsymbol{S}$ if and only if

- 0 n=0, or
- $n-3 \in S$.

Example

Definition

A natural number $oldsymbol{n}$ is in $oldsymbol{S}$ if and only if

- 0 n=0, or
- $n-3 \in S$.

$$\bullet \ \{0,3,6,9,\ldots\} \subseteq S$$

Example

Definition

A natural number $oldsymbol{n}$ is in $oldsymbol{S}$ if and only if

- 0 n=0, or
- $n-3 \in S$.

- ullet $\{0,3,6,9,\ldots\}\subseteq S$
- ullet $\{0,3,6,9,\ldots\}\supseteq S$

A Bottom-up Version

Definition

S is the *smallest* set such that $S\subseteq\mathbb{N}$ and S satisfies the following two conditions:

- $oldsymbol{0}$ $0 \in S$, and
- $oldsymbol{0}$ if $n \in S$, then $n+3 \in S$.

A Bottom-up Version

Definition

S is the *smallest* set such that $S\subseteq\mathbb{N}$ and S satisfies the following two conditions:

- $oldsymbol{0}$ $0 \in S$, and
- $oldsymbol{0}$ if $n \in S$, then $n+3 \in S$.

What is the set S?

ullet If the two conditions are satisfied, $\{0,3,6,9,\ldots\}\subseteq S$.

A Bottom-up Version

Definition

S is the *smallest* set such that $S\subseteq \mathbb{N}$ and S satisfies the following two conditions:

- $oldsymbol{0}$ $0 \in S$, and
- $oldsymbol{0}$ if $n \in S$, then $n+3 \in S$.

- ullet If the two conditions are satisfied, $\{0,3,6,9,\ldots\}\subseteq S$.
- S is the smallest such a set.
- The smallest set is unique.

Rules of Inference

 $\frac{A}{B}$

- A: hypothesis (antecedent)
- B: conclusion (consequent)
- ullet "if $oldsymbol{A}$ is true then $oldsymbol{B}$ is also true".
- ullet $\overline{oldsymbol{B}}$: axiom.

Defining a Set by Rules of Inferences

Definition

$$\overline{0 \in S}$$

$$\frac{n \in S}{(n+3) \in S}$$

Interpret the rules as follows:

"A natural number n is in S iff $n \in S$ can be derived from the axiom by applying the inference rules finitely many times"

Defining a Set by Rules of Inferences

Definition

$$\overline{0 \in S}$$

$$\frac{n \in S}{(n+3) \in S}$$

Interpret the rules as follows:

"A natural number n is in S iff $n \in S$ can be derived from the axiom by applying the inference rules finitely many times"

ex)
$$\mathbf{3} \in S$$
 because

$$\overline{ {0 \in S} \atop {3 \in S} }$$
 the axiom the second rule

Defining a Set by Rules of Inferences

Definition

$$\overline{0 \in S}$$

$$\frac{n \in S}{(n+3) \in S}$$

Interpret the rules as follows:

"A natural number n is in S iff $n \in S$ can be derived from the axiom by applying the inference rules finitely many times"

ex)
$$\mathbf{3} \in S$$
 because

$$\overline{ {0 \in S} \atop {3 \in S} }$$
 the axiom the second rule

Note that this interpretation enforces that ${m S}$ is the smallest set closed under the inference rules.

Summary

In inductive definitions, a set is defined in terms of itself. Three styles:

- Top-down
- Bottom-up
- Rules of inference

In PL, we mainly use the rules-of-inference method.

What set is defined by the following inductive rules?

$$\frac{x}{3}$$
 $\frac{x}{x+y}$

What set is defined by the following inductive rules?

$$\frac{x}{3}$$
 $\frac{x}{x+y}$

What set is defined by the following inductive rules?

$$\frac{s}{(s)}$$
 $\frac{s}{s}$

What set is defined by the following inductive rules?

$$\frac{x}{3}$$
 $\frac{x}{x+y}$

What set is defined by the following inductive rules?

$$\frac{s}{()}$$
 $\frac{s}{s}$

Of the following set as rules of inference:

$$S = \{a,b,aa,ab,ba,bb,aaa,aab,aba,abb,baa,bab,bba,bbb,...\}$$

What set is defined by the following inductive rules?

$$\frac{x}{3}$$
 $\frac{x}{x+y}$

What set is defined by the following inductive rules?

$$\frac{s}{(s)}$$
 $\frac{s}{s}$

Of the following set as rules of inference:

$$S = \{a,b,aa,ab,ba,bb,aaa,aab,aba,abb,baa,bab,bba,bbb,...\}$$

Opening the following set as rules of inference:

$$S = \{x^n y^{n+1} \mid n \in \mathbb{N}\}$$

Contents

- More examples of inductive definitions
 - natural numbers, strings, booleans
 - lists, binary trees
 - arithmetic expressions, propositional logic
- Structural induction
 - three example proofs

Natural Numbers

The set of natural numbers:

$$\mathbb{N} = \{0,1,2,3,\ldots\}$$

Natural Numbers

The set of natural numbers:

$$\mathbb{N} = \{0,1,2,3,\ldots\}$$

is inductively defined:

$$\overline{0}$$
 $\frac{n}{n+1}$

Natural Numbers

The set of natural numbers:

$$\mathbb{N} = \{0,1,2,3,\ldots\}$$

is inductively defined:

$$\overline{0}$$
 $\frac{n}{n+1}$

The inference rules can be expressed by a grammar:

$$n o 0 \mid n+1$$

Interpretation:

- 0 is a natural number.
- If n is a natural number then so is n+1.

The set of strings over alphabet $\{a, \ldots, z\}$, e.g., ϵ , a, b, ..., z, aa, ab, ..., az, ba, ... az, aaa, ..., zzz, and so on.

The set of strings over alphabet $\{a, \ldots, z\}$, e.g., ϵ , a, b, ..., z, aa, ab, ..., az, ba, ... az, aaa, ..., zzz, and so on. Inference rules:

$$\overline{\epsilon}$$
 $\frac{\alpha}{a\alpha}$ $\frac{\alpha}{b\alpha}$ \cdots $\frac{\alpha}{z\alpha}$

The set of strings over alphabet $\{a, \ldots, z\}$, e.g., ϵ , a, b, ..., z, aa, ab, ..., az, ba, ... az, aaa, ..., zzz, and so on. Inference rules:

$$\overline{\epsilon}$$
 $\frac{\alpha}{a\alpha}$ $\frac{\alpha}{b\alpha}$ \cdots $\frac{\alpha}{z\alpha}$

or simply,

$$\overline{\epsilon} \qquad \frac{\alpha}{x\alpha} \ x \in \{\mathtt{a}, \dots, \mathtt{z}\}$$

The set of strings over alphabet $\{a, \ldots, z\}$, e.g., ϵ , a, b, ..., z, aa, ab, ..., az, ba, ... az, aaa, ..., zzz, and so on. Inference rules:

$$\overline{\epsilon}$$
 $\frac{\alpha}{a\alpha}$ $\frac{\alpha}{b\alpha}$ \cdots $\frac{\alpha}{z\alpha}$

or simply,

$$\overline{\epsilon} \qquad rac{lpha}{xlpha} \; x \in \{ exttt{a}, \dots, exttt{z}\}$$

In grammar:

$$egin{array}{lll} lpha &
ightarrow & \epsilon \ & | & xlpha & (x \in \{ ext{a}, \dots, ext{z}\}) \end{array}$$

Boolean Values

The set of boolean values:

$$\mathbb{B} = \{true, false\}.$$

Boolean Values

The set of boolean values:

$$\mathbb{B} = \{true, false\}.$$

If a set is finite, just enumerate all of its elements by axioms:

$$\overline{true}$$
 \overline{false}

In grammar:

$$b o true \mid false$$

Lists

Examples of lists of integers:

- nil
- $\mathbf{3} \cdot \mathbf{14} \cdot \mathsf{nil}$

Lists

Examples of lists of integers:

- nil
- 14 · nil
- $\mathbf{3} \cdot \mathbf{14} \cdot \mathsf{nil}$
- $\mathbf{0}$ $-7 \cdot 3 \cdot 14 \cdot \mathsf{nil}$

Inference rules:

$$rac{l}{\mathsf{nil}} \quad rac{l}{n \cdot l} \; n \in \mathbb{Z}$$

In grammar:

$$\begin{array}{ccc} l & \to & \mathsf{nil} \\ & | & n \cdot l & (n \in \mathbb{Z}) \end{array}$$

Lists

A proof that $-7 \cdot 3 \cdot 14 \cdot \text{nil}$ is a list of integers:

$$\begin{array}{c} \frac{\overline{\mathsf{nil}}}{14 \cdot \mathsf{nil}} \ 14 \in \mathbb{Z} \\ \frac{3 \cdot 14 \cdot \mathsf{nil}}{7 \cdot 3 \cdot 14 \cdot \mathsf{nil}} \ 3 \in \mathbb{Z} \\ -7 \cdot 3 \cdot 14 \cdot \mathsf{nil} \end{array}$$

The proof tree is also called *derivation tree* or *deduction tree*.

Binary Trees

Examples of binary trees:

- leaf
- **2** (2, leaf, leaf)
- **3** (1, (2, leaf, leaf), leaf)

Binary Trees

Examples of binary trees:

- leaf
- **2** (2, leaf, leaf)
- **3** (1, (2, leaf, leaf), leaf)

Inference rules:

$$rac{t_1 \quad t_2}{(n,t_1,t_2)} \; n \in \mathbb{Z}$$

In grammar:

$$\begin{array}{ccc} t & \rightarrow & \mathsf{leaf} \\ & | & (n,t,t) & (n \in \mathbb{Z}) \end{array}$$

Binary Trees

A proof that

$$(1,(2,\mathsf{leaf},\mathsf{leaf}),(3,(4,\mathsf{leaf},\mathsf{leaf}),\mathsf{leaf}))$$

is a binary tree:

$$\frac{\frac{\overline{\mathsf{leaf}}}{\mathsf{(2,leaf,leaf)}}}{\frac{(2,\mathsf{leaf},\mathsf{leaf})}{(1,(2,\mathsf{leaf},\mathsf{leaf})}} \, \overset{}{2} \in \mathbb{Z} \quad \frac{\overline{\mathsf{leaf}}}{(3,(4,\mathsf{leaf},\mathsf{leaf}),\mathsf{leaf})} \, \overset{}{3} \in \mathbb{Z}}{(1,(2,\mathsf{leaf},\mathsf{leaf}),(3,(4,\mathsf{leaf},\mathsf{leaf}),\mathsf{leaf}))} \, \overset{}{1} \in \mathbb{Z}$$

Binary Trees: a different version

Binary tree examples: 1, (1, nil), (1, 2), ((1, 2), nil), ((1, 2), (3, 4)).

Binary Trees: a different version

Binary tree examples: 1, (1, nil), (1, 2), ((1, 2), nil), ((1, 2), (3, 4)). Inference rules:

$$\overline{n} \ n \in \mathbb{Z} \qquad rac{t}{(t,\mathsf{nil})} \qquad rac{t}{(\mathsf{nil},t)} \qquad rac{t_1}{(t_1,t_2)}$$

In grammar:

$$egin{array}{lll} t &
ightarrow & n & (n \in \mathbb{Z}) \ & | & (t, \mathsf{nil}) \ & | & (\mathsf{nil}, t) \ & | & (t, t) \end{array}$$

A proof that ((1,2),(3,nil)) is a binary tree:

$$\frac{\overline{1} \quad \overline{2}}{(1,2)} \quad \frac{\overline{3}}{(3,\mathsf{nil})} \\ \overline{((1,2),(3,\mathsf{nil}))}$$

Expressions

Expression examples: 2, -2, 1+2, 1+(2*(-3)), etc.

Expressions

Expression examples: 2, -2, 1+2, 1+(2*(-3)), etc. Inference rules:

$$\overline{n} \ n \in \mathbb{Z} \qquad rac{e}{-e} \qquad rac{e_1 \quad e_2}{e_1 + e_2} \qquad rac{e_1 \quad e_2}{e_1 * e_2}$$

In grammar:

$$egin{array}{lll} e &
ightarrow & n & (n \in \mathbb{Z}) \ & | & -e \ & | & e+e \ & | & e*e \end{array}$$

Example:

$$\frac{\bar{2} \quad \frac{\bar{3}}{(-3)}}{\bar{1} \quad (2*(-3))}$$
$$\frac{\bar{1} \quad (2*(-3))}{(1+(2*(-3)))}$$

Propositional Logic

Examples:

- T, F
- \bullet $T \wedge F$
- \bullet $T \vee F$
- $(T \wedge F) \wedge (T \vee F)$
- $T \Rightarrow (F \Rightarrow T)$

Propositional Logic

Syntax:

$$\begin{array}{cccc} f & \rightarrow & T \mid F \\ & \mid & \neg f \\ & \mid & f \land f \\ & \mid & f \lor f \\ & \mid & f \Rightarrow f \end{array}$$

Semantics ($[\![f]\!]$):

Propositional Logic

Structural Induction

A technique for proving properties about inductively defined sets.

To prove that a proposition P(s) is true for all structures s, prove the following:

- (Base case) P is true on simple structures (those without substructures)
- (Inductive case) If P is true on the substructures of s, then it is true on s itself. The assumption is called *induction hypothesis* (I.H.).

Let ${\boldsymbol S}$ be the set defined by the following inference rules:

$$\overline{3} \qquad \frac{x \quad y}{x+y}$$

Prove that for all $x \in S$, x is divisible by 3.

Let S be the set defined by the following inference rules:

$$\frac{x}{3}$$
 $\frac{x}{x+y}$

Prove that for all $x \in S$, x is divisible by 3.

Proof. By structural induction.

ullet (Base case) The base case is when x is 3. Obviously, x is divisible by 3.

Let S be the set defined by the following inference rules:

$$\frac{x}{3}$$
 $\frac{x}{x+y}$

Prove that for all $x \in S$, x is divisible by 3. **Proof.** By structural induction.

- ullet (Base case) The base case is when x is ullet Obviously, x is divisible by ullet .
- (Inductive case) The induction hypothesis (I.H.) is

 $oldsymbol{x}$ is divisible by $oldsymbol{3}$, $oldsymbol{y}$ is divisible by $oldsymbol{3}$.

Let $x=3k_1$ and $y=3k_2$.

Let S be the set defined by the following inference rules:

$$\overline{3} \qquad rac{x}{x+y}$$

Prove that for all $x \in S$, x is divisible by 3. **Proof.** By structural induction.

- ullet (Base case) The base case is when x is ullet Obviously, x is divisible by ullet .
- (Inductive case) The induction hypothesis (I.H.) is

 $oldsymbol{x}$ is divisible by $oldsymbol{3}$, $oldsymbol{y}$ is divisible by $oldsymbol{3}$.

Let $x=3k_1$ and $y=3k_2$. Using I.H., we derive

$$x+y$$
 is divisible by 3

as follows:

$$x+y = 3k_1 + 3k_2 \cdots$$
 by I.H. $= 3(k_1 + 3k_2)$

Let ${\cal S}$ be the set defined by the following inference rules:

$$\frac{x}{()}$$
 $\frac{x}{(x)}$ $\frac{x}{xy}$

Prove that every element of the set has the same number of ('s and)'s.

Let S be the set defined by the following inference rules:

$$\frac{x}{()}$$
 $\frac{x}{(x)}$ $\frac{x}{xy}$

Prove that every element of the set has the same number of ('s and)'s. **Proof** Restate the claim formally:

If
$$x \in S$$
 then $l(x) = r(x)$

where l(x) and r(x) denote the number of ('s and)'s, respectively.

Let S be the set defined by the following inference rules:

$$\frac{x}{()}$$
 $\frac{x}{(x)}$ $\frac{x}{xy}$

Prove that every element of the set has the same number of ('s and)'s. **Proof** Restate the claim formally:

If
$$x \in S$$
 then $l(x) = r(x)$

where $\boldsymbol{l}(x)$ and $\boldsymbol{r}(x)$ denote the number of ('s and)'s, respectively. We prove it by structural induction:

ullet (Base case): The base case is when x= (). Then l(x)=1=r(x).

• (Inductive case): There are two inductive cases:

$$\frac{x}{(x)}$$
 $\frac{x}{xy}$

Induction hypotheses (I.H.):

$$l(x) = r(x), \qquad l(y) = r(y).$$

• (Inductive case): There are two inductive cases:

$$\frac{x}{(x)}$$
 $\frac{x}{xy}$

Induction hypotheses (I.H.):

$$l(x) = r(x), \qquad l(y) = r(y).$$

▶ The first case. We prove l((x)) = r((x)):

$$\begin{array}{rcl} l((x)) & = & l(x)+1 & \cdots \text{ by definition of } l((x)) \\ & = & r(x)+1 & \cdots \text{ by I.H.} \\ & = & r((x)) & \cdots \text{ by definition of } r((x)) \end{array}$$

• (Inductive case): There are two inductive cases:

$$\frac{x}{(x)}$$
 $\frac{x}{xy}$

Induction hypotheses (I.H.):

$$l(x) = r(x), \qquad l(y) = r(y).$$

▶ The first case. We prove l((x)) = r((x)):

$$l((x)) = l(x) + 1 \cdots$$
 by definition of $l((x))$
= $r(x) + 1 \cdots$ by I.H.
= $r((x)) \cdots$ by definition of $r((x))$

▶ The second case. We prove l(xy) = r(xy):

Let T be the set of binary trees:

$$rac{t_1}{\mathsf{leaf}} = rac{t_1}{(n,t_1,t_2)} \; n \in \mathbb{Z}$$

Prove that for all such trees, the number of leaves is always one more than the number of internal nodes.

Let T be the set of binary trees:

$$rac{t_1}{\mathsf{leaf}} = rac{t_1}{(n,t_1,t_2)} \; n \in \mathbb{Z}$$

Prove that for all such trees, the number of leaves is always one more than the number of internal nodes.

Proof. Restate the claim more formally:

If
$$t \in T$$
 then $l(t) = i(t) + 1$

where l(t) and i(t) denote the number of leaves and internal nodes, respectively.

Let T be the set of binary trees:

$$rac{t_1}{\mathsf{leaf}} = rac{t_1}{(n,t_1,t_2)} \; n \in \mathbb{Z}$$

Prove that for all such trees, the number of leaves is always one more than the number of internal nodes.

Proof. Restate the claim more formally:

If
$$t \in T$$
 then $l(t) = i(t) + 1$

where l(t) and i(t) denote the number of leaves and internal nodes, respectively. We prove it by structural induction:

ullet (Base case): The base case is when $t={\sf leaf}$, where l(t)=1 and i(t)=0.

Let T be the set of binary trees:

$$rac{t_1}{\mathsf{leaf}} = rac{t_1}{(n,t_1,t_2)} \; n \in \mathbb{Z}$$

Prove that for all such trees, the number of leaves is always one more than the number of internal nodes.

Proof. Restate the claim more formally:

If
$$t \in T$$
 then $l(t) = i(t) + 1$

where l(t) and i(t) denote the number of leaves and internal nodes, respectively. We prove it by structural induction:

- ullet (Base case): The base case is when $t={\sf leaf}$, where l(t)=1 and i(t)=0.
- (Inductive case): The induction hypothesis:

$$l(t_1) = i(t_1) + 1, \qquad l(t_2) = i(t_2) + 1$$

Let T be the set of binary trees:

$$rac{t_1}{\mathsf{leaf}} = rac{t_1}{(n,t_1,t_2)} \; n \in \mathbb{Z}$$

Prove that for all such trees, the number of leaves is always one more than the number of internal nodes.

Proof. Restate the claim more formally:

If
$$t \in T$$
 then $l(t) = i(t) + 1$

where l(t) and i(t) denote the number of leaves and internal nodes, respectively. We prove it by structural induction:

- ullet (Base case): The base case is when $t={\sf leaf}$, where l(t)=1 and i(t)=0.
- (Inductive case): The induction hypothesis:

$$l(t_1) = i(t_1) + 1, \qquad l(t_2) = i(t_2) + 1$$

Using I.H., we prove $l((n,t_1,t_2))=i((n,t_1,t_2))+1$:

$$egin{array}{lll} l((n,t_1,t_2))&=&l(t_1)+l(t_2)\ &=&i(t_1)+1+i(t_2)+1 \end{array}$$
 by induction hypothesis $&=&i(n,t_1,t_2)+1 \end{array}$

Summary

- Computer science is full of inductive definitions.
 - primitive values: booleans, characters, integers, strings, etc
 - compound values: lists, trees, graphs, etc
 - language syntax and semantics
- Structural induction
 - ▶ a general technique for reasoning about inductively defined sets