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Inductive Definitions

@ A technique for formally defining a set.
@ The set is defined in terms of itself.

@ The only way of defining an infinite set by a finite means.
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Example
Definition

A natural number n is in S if and only if
Q@ n=0,or
Q@n—-3¢sS.

What is the set S7?
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Example
Definition

A natural number n is in S if and only if
Q@ n=0,or
Q@n—-3¢sS.

What is the set S7?
¢ {0,3,6,9,...} C S
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Example
Definition

A natural number n is in S if and only if
Q@ n=0,or
Q@n—-3¢sS.

What is the set S7?
¢ {0,3,6,9,...} C S
¢ {0,3,6,9,...} D S
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A Bottom-up Version

Definition
S is the smallest set such that S C N and S satisfies the following two
conditions:

Q@0cS, and

Q@ ifne S thenn+3¢S. )

What is the set S7
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A Bottom-up Version

Definition
S is the smallest set such that S C N and S satisfies the following two
conditions:

Q@0cS, and

Q@ ifne S thenn+3¢S.

What is the set S7
e If the two conditions are satisfied, {0, 3,6,9,...} C S.
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A Bottom-up Version

Definition
S is the smallest set such that S C N and S satisfies the following two
conditions:

Q@0cS, and

Q@ ifne S thenn+3¢S.

What is the set S7?
e If the two conditions are satisfied, {0, 3,6,9,...} C S.

@ S is the smallest such a set.

@ The smallest set is unique.
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Rules of Inference

&[>

@ A: hypothesis (antecedent)
e B: conclusion (consequent)
e “if Ais true then B is also true”.

o B: axiom.
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Defining a Set by Rules of Inferences
Definition
0es

nesS
(n+3)esS

Interpret the rules as follows:

“A natural number n is in S iff n € S can be derived from the axiom by
applying the inference rules finitely many times”
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Defining a Set by Rules of Inferences
Definition
0es

nesS
(n+3)esS

Interpret the rules as follows:

“A natural number n is in S iff n € S can be derived from the axiom by
applying the inference rules finitely many times”

ex) 3 € S because

0csS EEe aX|omd |
3¢S e second rule
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Defining a Set by Rules of Inferences
Definition
0es

nesS
(n+3)esS

Interpret the rules as follows:

“A natural number n is in S iff n € S can be derived from the axiom by
applying the inference rules finitely many times”

ex) 3 € S because

0csS :El;e aX|omd |
3¢ g the second rule

Note that this interpretation enforces that S is the smallest set closed
under the inference rules.
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Summary
In inductive definitions, a set is defined in terms of itself. Three styles:

@ Top-down
@ Bottom-up

@ Rules of inference
In PL, we mainly use the rules-of-inference method.

Hakjoo Oh AAA551 2016 Spring, Lecture 1 April 8, 2016 7/27



Exercises

© What set is defined by the following inductive rules?

ol
8
+
<
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Exercises

@ What set is defined by the following inductive rules?

_ r Yy
3 r+y

@ What set is defined by the following inductive rules?

_ S S

O (s) s s
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Exercises

@ What set is defined by the following inductive rules?

_ r Yy
3 r+y

@ What set is defined by the following inductive rules?

_ S S

O (s) s s
© Define the following set as rules of inference:

S = {a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, ...}
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Exercises

@ What set is defined by the following inductive rules?

_ r Yy
3 r+y

@ What set is defined by the following inductive rules?

_ S S

O (s) s s

© Define the following set as rules of inference:
S = {a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, ...}

@ Define the following set as rules of inference:

S — {mnyn—l—l | = N}
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Contents

@ More examples of inductive definitions

» natural numbers, strings, booleans
> lists, binary trees
» arithmetic expressions, propositional logic

@ Structural induction
» three example proofs
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Natural Numbers

The set of natural numbers:

N={0,1,2,3,...}
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Natural Numbers

The set of natural numbers:
N={0,1,2,3,...}

is inductively defined:
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Natural Numbers
The set of natural numbers:
N={0,1,2,3,...}
is inductively defined:
0 ntl
The inference rules can be expressed by a grammar:
n—>0|n+1

Interpretation:
@ 0 is a natural number.

@ If n is a natural number then so is n + 1.
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Strings

The set of strings over alphabet {a,...,z}, eg., € a, b, ..., 2, aa, ab,
...,az, ba, ... az, aaa, ..., zzz, and so on.
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Strings

The set of strings over alphabet {a,...,z}, eg., € a, b, ..., 2, aa, ab,
...,az, ba, ... az, aaa, ..., zzz, and so on. Inference rules:

« (8 [o

€ ax box --- ZOo
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Strings

The set of strings over alphabet {a,...,z}, eg., € a, b, ..., 2, aa, ab,

...,az, ba, ... az, aaa, ..., zzz, and so on. Inference rules:

B a (8 o
€ ax baa - zZQy
or simply,
«
E m—aaze{a,...,z}
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Strings

The set of strings over alphabet {a,...,z}, eg., € a, b, ..., 2, aa, ab,
...,az, ba, ... az, aaa, ..., zzz, and so on. Inference rules:

- o o
€ ax bau --- zZo
or simply,
o
E maze{a,...,z}
In grammar:
a — €
za (x€{a,...,z})
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Boolean Values

The set of boolean values:

B = {true, false}.
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Boolean Values

The set of boolean values:

B = {true, false}.

If a set is finite, just enumerate all of its elements by axioms:

true false

In grammar:

b — true | false
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Lists

Examples of lists of integers:
Q nil
Q@ 14 -nil
Q@ 3-14 . nil
Q@ —7-3-14 -nil
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Lists

Examples of lists of integers:
Q nil
Q 14 - nil
Q@ 3-14 . nil
Q@ —7-3-14 -nil

Inference rules:

N
nil n-l"EZ
In grammar:
Il — nil
| n-l (n€Z)
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Lists

A proof that —7 - 3 - 14 - nil is a list of integers:

nil

14. I14€Z

—3€Z

3.14 - nil e
—7.3-14 -nil

The proof tree is also called derivation tree or deduction tree.
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Binary Trees

Examples of binary trees:
O leaf
Q (2, leaf, leaf)
@ (1, (2, leaf, leaf), leaf)
Q (1, (2, leaf, leaf), (3, (4, leaf, leaf), leaf))
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Binary Trees

Examples of binary trees:
O leaf
Q (2, leaf, leaf)
@ (1, (2, leaf, leaf), leaf)
Q (1, (2,leaf,leaf), (3, (4, leaf, leaf), leaf))

Inference rules:
t1 ta

leaf (TL, t1, tz) "

€ Z

In grammar:
t — leaf

| (n,t,t) (neZ)
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Binary Trees

A proof that
(1, (2, leaf, leaf), (3, (4, leaf, leaf), leaf))

is a binary tree:

leaf
leaf 0c7 (4, leaf, leaf)
(2, leaf, leaf) < (3, (4, leaf, leaf), leaf)
(1, (2, leaf, leaf), (3, (4, leaf, leaf), leaf))

4€Z
3€EZ
€L
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Binary Trees: a different version
Binary tree examples: 1, (1,nil), (1,2), ((1,2),nil), ((1,2),(3,4)).
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Binary Trees: a different version

Binary tree examples: 1, (1,nil), (1,2), ((1,2),nil), ((1,2),(3,4)).
Inference rules:

t t t1 ta
nM€Z (i) (nilt)  (ti,t2)

In grammar:

t > n (n€Z
| (2, nil)
| (nil, )
| (1)
A proof that ((1,2), (3, nil)) is a binary tree:
1 2 3
(1,2)  (3;nil)
((1,2), (3, nil))
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Expressions
Expression examples: 2, —2, 142, 1+ (2 * (—3)), etc.
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Expressions

Expression examples: 2, —2,1 4+ 2, 1 4 (2 % (—3)), etc.
Inference rules:

7 e €1 €2 e ex
nnE —e e1 + es e, * ey

In grammar:

—e
e+ e

e > n (n€Z)
|
|
| exe

Example:
3
2 (—3)

1 (2%(-3)
(1+(2%(=3))
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Propositional Logic

Examples:
oT F
o TANF
oeTVF
o (TANF)N(TVF)
oT= (F=T)
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Propositional Logic

Syntax:

<

———

e

Semantics ([ f ]):

[T]
[ F]
[-f1
[Lfainf2]
LAV 2l
[Lfi=Ff21]
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< > Sh—
< M

¢
<

true

false

not [ f

[ f1] andalso [ f2 ]
[ f1] orelse [ f2]
[ f1] implies [ f2 ]
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Propositional Logic

[(TA(TVF)=F]=[TA(TVF)]implies[ F ]

([ T ] andalso [ TV F ) implies false

(true andalso ([ T' ] orelse [ F'])) implies false
(true andalso (true orelse false)) implies false
= false
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Structural Induction

A technique for proving properties about inductively defined sets.

To prove that a proposition P(s) is true for all structures s, prove the
following:
@ (Base case) P is true on simple structures (those without
substructures)

@ (Inductive case) If P is true on the substructures of s, then it is
true on s itself. The assumption is called induction hypothesis

(1LH.).
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Example 1

Let S be the set defined by the following inference rules:

T Y
3 z+y
Prove that for all x € S, x is divisible by 3.
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Example 1

Let S be the set defined by the following inference rules:
T Y
3 z+y

Prove that for all x € S, « is divisible by 3.

Proof. By structural induction.

@ (Base case) The base case is when x is 3. Obviously, x is divisible by 3.
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Example 1

Let S be the set defined by the following inference rules:

r 'y
3 z+y
Prove that for all x € S, « is divisible by 3.
Proof. By structural induction.

@ (Base case) The base case is when x is 3. Obviously, x is divisible by 3.
@ (Inductive case) The induction hypothesis (I.H.) is
x is divisible by 3, y is divisible by 3.
Let © = 3k; and y = 3k».
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Example 1

Let S be the set defined by the following inference rules:
_ r Yy
3 z+y

Prove that for all ® € S, x is divisible by 3.
Proof. By structural induction.

@ (Base case) The base case is when x is 3. Obviously, x is divisible by 3.
@ (Inductive case) The induction hypothesis (I.H.) is
x is divisible by 3, y is divisible by 3.
Let * = 3k; and y = 3ks. Using |.H., we derive
x + y is divisible by 3

as follows:
a:—i—y = 3k1+3k2 '-'by|.H.
= 3(k1+ 3k2)

Cl
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Example 2
Let S be the set defined by the following inference rules:

_ _r T Y
O (x) Ty

Prove that every element of the set has the same number of (s and )'s.
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Example 2

Let S be the set defined by the following inference rules:

€T r Yy

O @ =y

Prove that every element of the set has the same number of ('s and )’s.
Proof Restate the claim formally:

If x € S then l(z) = r(x)

where I(x) and r(x) denote the number of ('s and )'s, respectively.

Hakjoo Oh AAA551 2016 Spring, Lecture 1

April 8, 2016 24 /27



Example 2

Let S be the set defined by the following inference rules:
T x Y

O @ Tz

Prove that every element of the set has the same number of ('s and )’s.
Proof Restate the claim formally:

If £ € S then l(z) = r(x)

where I(x) and r(x) denote the number of ('s and )'s, respectively.
We prove it by structural induction:

o (Base case): The base case is when & = (). Then
Il(x) =1=r(x).
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Example 2

@ (Inductive case): There are two inductive cases:
x oz Y
(x) Ty
Induction hypotheses (I.H.):
W) =7r(z), Uy) =r(y)

Hakjoo Oh AAA551 2016 Spring, Lecture 1 April 8, 2016 25 /27



Example 2

@ (Inductive case): There are two inductive cases:
x oz Y
(x) Ty
Induction hypotheses (I.H.):
W) =7r(z), Uy) =r(y)

» The first case. We prove I((x)) = r((x)):

I((x) I(z) +1 ---by definition of I((x))
r(z)+1 ---bylLH.
r((x))  ---by definition of r((x))
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Example 2

@ (Inductive case): There are two inductive cases:

Z_ x Y
(x) Ty
Induction hypotheses (I.H.):
Uz) =r(z), Uy) =7(y)-

» The first case. We prove I((x)) = r((x)):

I((®)

» The second case.
l(zy)
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= Il(x)+1 ---by definition of [((x))
= r(x)+1 ---bylH.
= r((@) - -+ by definition of 7((x))

We prove l(zy) = r(zy):

l(x) +1(y) ---by definition of I(xy)
r(x) +r(y) ---bylLH.
r(xy) - - - by definition of r(xy)
[
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Example 3

Let T be the set of binary trees:
t1 t2 n
leaf (TL, tl, tz)

€L

Prove that for all such trees, the number of leaves is always one more than
the number of internal nodes.
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Example 3

Let T be the set of binary trees:
t1 2
n
leaf (’I’L, tl, tz)
Prove that for all such trees, the number of leaves is always one more than

the number of internal nodes.
Proof. Restate the claim more formally:

Ift € T then I(t) = i(t) + 1

where I(t) and i(t) denote the number of leaves and internal nodes, respectively.

€L
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Example 3

Let T be the set of binary trees:
t, to
n

leaf (n, tl, tz)
Prove that for all such trees, the number of leaves is always one more than
the number of internal nodes.
Proof. Restate the claim more formally:

Ift € T then l(t) =i(t) + 1

where I(t) and i(t) denote the number of leaves and internal nodes, respectively.
We prove it by structural induction:

€L

@ (Base case): The base case is when t = leaf, where I(t) = 1 and i(t) = 0.
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Example 3

Let T be the set of binary trees:
t, to
n

leaf (n, tl, tz)
Prove that for all such trees, the number of leaves is always one more than
the number of internal nodes.
Proof. Restate the claim more formally:

Ift € T then l(t) =i(t) + 1

where I(t) and i(t) denote the number of leaves and internal nodes, respectively.
We prove it by structural induction:

€L

@ (Base case): The base case is when t = leaf, where I(t) = 1 and i(t) = 0.

@ (Inductive case): The induction hypothesis:

U(t) = i(t) + 1, U(t2) = i(ta) + 1
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Example 3

Let T be the set of binary trees:
t1 to
leaf (’I’L, tl, tz) "

€L

Prove that for all such trees, the number of leaves is always one more than
the number of internal nodes.
Proof. Restate the claim more formally:

Ift € T then l(t) =i(t) + 1

where I(t) and i(t) denote the number of leaves and internal nodes, respectively.
We prove it by structural induction:

@ (Base case): The base case is when t = leaf, where I(t) = 1 and i(t) = 0.
@ (Inductive case): The induction hypothesis:
U(t) =i(t) +1,  Ut2) =i(t2) +1
Using I.H., we prove I((n, t1,t2)) = i((n,t1,t2)) + 1:

I((n, t1,t2)) I(t1) + I(t2)
i(t1) +1 +i(t2) +1 by induction hypothesis
i(n,t1,t2) + 1
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Summary

@ Computer science is full of inductive definitions.

» primitive values: booleans, characters, integers, strings, etc
» compound values: lists, trees, graphs, etc
» language syntax and semantics

@ Structural induction
» a general technique for reasoning about inductively defined sets
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