
AAA501: Programing Langauge Theory

Lecture 11 — Hoare Logic

Hakjoo Oh
2016 Spring

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 1 / 16



Acknowledgement

These slides are based on the Hoare Logic chapter of Software
Foundations by Pierce et al.

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 2 / 16



Program Verification

Using the precise definition of programming languages to formally
prove that programs satisfy specifications of their behavior.

Hoare Logic is a program logic that can be used to reason
compositionally about the correctness of programs. Based on two
ideas:

I A natural way of writing down specifications of programs.

I A compositional proof technique for proving that programs are correct
with respect to the specifications.

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 3 / 16



Assertions

Properties that hold at particular points during a program’s execution.

Claims about the current state of the memory when program
execution reaches that point. Formally, predicates on memory states,
i.e., Memory→ Bool.

A set of memory states in which the predicate holds.

Examples:
I λs. s(x) = 3.
I λs. s(x) ≤ s(y).
I λs. s(x) = 3 ∨ s(x) ≤ s(y).
I λs. s(z) · s(z) ≤ s(x) ∧ ¬((s(z) + 1) · (s(z) + 1) ≤ s(x))
I λs. true
I λs. false

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 4 / 16



Hoare Triples

Claims about the behavior of commands.

{P} c {Q}
I ”If command c is started in a state satisfying assertion P , and if c

eventually terminates in some final state, then this final state will
satisfy the assertion Q.”

Formally,

{P} c {Q} ⇐⇒ ∀s, s′. (c, s) ⇓ s′ → P (s)→ Q(s).

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 5 / 16



Examples

Paraphrase the following Hoare triples in English:

{true} c {x = 5}
{x = m} c {x = m+ 5}
{x ≤ y} c {y ≤ x}
{true} c {false}
{x = m} c {y = m!}
{true} c {z · z ≤ m ∧ ¬((z + 1) · (z + 1) ≤ m)}

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 6 / 16



Examples

Which of the following Hoare triples are valid?

{true} x := 5 {x = 5}
{x = 2} x := x+ 1 {x = 3}
{true} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}
{true} skip {false}
{false} skip {true}
{true} while true do skip {false}
{x = 0} while x == 0 do x := x+ 1 {x = 1}
{x = 1} while x 6= 0 do x := x+ 1 {x = 100}

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 7 / 16



Two Simple Facts

1 ∀P,Q, c. (∀s. Q(s))→ {P} c {Q}.
2 ∀P,Q, c. (∀s. ¬P (s))→ {P} c {Q}.

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 8 / 16



Proof Rules of Hoare Logic

Hoare logic provides a set of proof rules for compositionally proving
the validity of Hoare triples.

I The structure of a program’s correctness mirrors the structure of the
program.

I One rule for reasoning about each of the different syntactic forms of
commands, plus structural rules that are used for gluing things
together.

Hoare triples are proved using the proof rules, without relying on the
definition of Hoare triples.

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 9 / 16



Assignment

{Q[x 7→ e]} x := e {Q}

{y = 1} x := y {x = 1}
{?} x := y + z {x = 1}
{?} x := x+ 1 {x ≤ 5}
{?} x := 3 {x = 3}
{?} x := 3 {0 ≤ x ∧ x ≤ 5}

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 10 / 16



Skip and Sequence

{P} skip {Q}

{P} c1 {Q} {Q} c2 {R}
{P} c1; c2 {R}

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 11 / 16



Consequence

P → P ′ {P ′} c {Q′} Q′ → Q

{P} c {Q}

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 12 / 16



Conditional

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}
{P} if b c1 c2 {Q}

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 13 / 16



Loops

{P ∧ b} c {P}
{P} while b c {P ∧ ¬b}

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 14 / 16



Exercise

{x ≤ 3} while x ≤ 2 do x := x+ 1 {x = 3}

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 15 / 16



Hoare Logic

Idea: a domain specific logic for reasoning about properties of programs

This hides the low-level details of the semantics of the program

Leads to a compositional reasoning process

{Q[x 7→ e]} x := e {Q}

{P} skip {Q}

{P} c1 {Q} {Q} c2 {R}
{P} c1; c2 {R}

P → P ′ {P ′} c {Q′} Q′ → Q

{P} c {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}
{P} if b c1 c2 {Q}

{P ∧ b} c {P}
{P} while b c {P ∧ ¬b}

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 16 / 16


