AAA501: Programing Langauge Theory
 Lecture 11 - Hoare Logic

Hakjoo Oh
2016 Spring

Acknowledgement

These slides are based on the Hoare Logic chapter of Software Foundations by Pierce et al.

Software Foundations

Benjamin C. Pierce

Chris Casinghino
Marco Gaboardi
Michael Greenberg
Cătălin Hriţcu
Vilhelm Sjöberg
Brent Yorgey
with Loris D'Antoni, Andrew W. Appel, Arthur Azevedo de Amorim, Arthur Chargueraud, Anthony Cowley, Jeffrey Foster, Dmitri Garbuzov, Michael Hicks, Ranjit Jhala, Greg Morrisett, Jennifer Paykin, Mukund Raghothaman, Chung-chieh Shan, Leonid Spesivtsev, Andrew Tolmach, Stephanie Weirich, and Steve Zdancewic
Table of Contents Roadmap Download

Verion 3.2 (Jamanary 2015)

Program Verification

- Using the precise definition of programming languages to formally prove that programs satisfy specifications of their behavior.
- Hoare Logic is a program logic that can be used to reason compositionally about the correctness of programs. Based on two ideas:
- A natural way of writing down specifications of programs.
- A compositional proof technique for proving that programs are correct with respect to the specifications.

Assertions

- Properties that hold at particular points during a program's execution.
- Claims about the current state of the memory when program execution reaches that point. Formally, predicates on memory states, i.e., Memory \rightarrow Bool.
- A set of memory states in which the predicate holds.
- Examples:
$-\lambda s . s(x)=3$.
- $\lambda s . s(x) \leq s(y)$.
- $\lambda s . s(x)=3 \vee s(x) \leq s(y)$.
- $\lambda s . s(z) \cdot s(z) \leq s(x) \wedge \neg((s(z)+1) \cdot(s(z)+1) \leq s(x))$
- $\lambda s . t r u e$
- λs. false

Hoare Triples

- Claims about the behavior of commands.
- $\{P\} c\{Q\}$
- "If command \boldsymbol{c} is started in a state satisfying assertion \boldsymbol{P}, and if \boldsymbol{c} eventually terminates in some final state, then this final state will satisfy the assertion Q."
- Formally,

$$
\{P\} c\{Q\} \Longleftrightarrow \forall s, s^{\prime} .(c, s) \Downarrow s^{\prime} \rightarrow P(s) \rightarrow Q(s)
$$

Examples

Paraphrase the following Hoare triples in English:

- $\{$ true $\} c\{x=5\}$
- $\{x=m\} c\{x=m+5\}$
- $\{x \leq y\} c\{y \leq x\}$
- \{true\} c \{false $\}$
- $\{x=m\} c\{y=m!\}$
- $\{$ true $\} c\{z \cdot z \leq m \wedge \neg((z+1) \cdot(z+1) \leq m)\}$

Examples

Which of the following Hoare triples are valid?

- $\{$ true $\} x:=5\{x=5\}$
- $\{x=2\} x:=x+1\{x=3\}$
- $\{$ true $\} x:=5 ; y:=0\{x=5\}$
- $\{x=2 \wedge x=3\} x:=5\{x=0\}$
- \{true\} skip \{false\}
- \{false\} skip $\{$ true $\}$
- \{true\} while true do skip \{false\}
- $\{x=0\}$ while $x=0$ do $x:=x+1\{x=1\}$
- $\{x=1\}$ while $x \neq 0$ do $x:=x+1\{x=100\}$

Two Simple Facts

(1) $\forall P, Q, c .(\forall s . Q(s)) \rightarrow\{P\} c\{Q\}$.
© $\forall P, Q, c$. $\forall s . \neg P(s)) \rightarrow\{P\} c\{Q\}$.

Proof Rules of Hoare Logic

- Hoare logic provides a set of proof rules for compositionally proving the validity of Hoare triples.
- The structure of a program's correctness mirrors the structure of the program.
- One rule for reasoning about each of the different syntactic forms of commands, plus structural rules that are used for gluing things together.
- Hoare triples are proved using the proof rules, without relying on the definition of Hoare triples.

Assignment

$$
\{Q[x \mapsto e]\} x:=e\{Q\}
$$

- $\{y=1\} x:=y\{x=1\}$
- $\{?\} x:=y+z\{x=1\}$
- \{?\} $x:=x+1\{x \leq 5\}$
- $\{?\}$? $:=3\{x=3\}$
- $\{?\} x:=3\{0 \leq x \wedge x \leq 5\}$

Skip and Sequence

$$
\{P\} \text { skip }\{Q\}
$$

$$
\frac{\{P\} c_{1}\{Q\} \quad\{Q\} c_{2}\{R\}}{\{P\} c_{1} ; c_{2}\{R\}}
$$

Consequence

$$
\begin{array}{ll}
P \rightarrow P^{\prime} \quad\left\{P^{\prime}\right\} c\left\{Q^{\prime}\right\} & Q^{\prime} \rightarrow Q \\
& \{P\} c\{Q\}
\end{array}
$$

Conditional

$$
\frac{\{P \wedge b\} c_{1}\{Q\} \quad\{P \wedge \neg b\} c_{2}\{Q\}}{\{P\} \text { if } b c_{1} c_{2}\{Q\}}
$$

Loops

$$
\frac{\{P \wedge b\} c\{P\}}{\{P\} \text { while } b c\{P \wedge \neg b\}}
$$

Exercise

$$
\{x \leq 3\} \text { while } x \leq 2 \text { do } x:=x+1\{x=3\}
$$

Hoare Logic

Idea: a domain specific logic for reasoning about properties of programs

- This hides the low-level details of the semantics of the program
- Leads to a compositional reasoning process

$$
\begin{gathered}
\{Q[x \mapsto e]\} x:=e\{Q\} \\
\{P\} \text { skip }\{Q\} \\
\frac{\{P\} c_{1}\{Q\} \quad\{Q\} c_{2}\{R\}}{\{P\} c_{1} ; c_{2}\{R\}} \\
\frac{P \rightarrow P^{\prime} \quad\left\{P^{\prime}\right\} c\left\{Q^{\prime}\right\} \quad Q^{\prime} \rightarrow Q}{\{P\} c\{Q\}} \\
\frac{\{P \wedge b\} c_{1}\{Q\} \quad\{P \wedge \neg b\} c_{2}\{Q\}}{\{P\} \text { if } b c_{1} c_{2}\{Q\}} \\
\frac{\{P \wedge b\} c\{P\}}{\{P\} \text { while } b c\{P \wedge \neg b\}}
\end{gathered}
$$

