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Program Verification

Using the precise definition of programming languages to formally
prove that programs satisfy specifications of their behavior.

Hoare Logic is a program logic that can be used to reason
compositionally about the correctness of programs. Based on two
ideas:

I A natural way of writing down specifications of programs.

I A compositional proof technique for proving that programs are correct
with respect to the specifications.
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Assertions

Properties that hold at particular points during a program’s execution.

Claims about the current state of the memory when program
execution reaches that point. Formally, predicates on memory states,
i.e., Memory→ Bool.

A set of memory states in which the predicate holds.

Examples:
I λs. s(x) = 3.
I λs. s(x) ≤ s(y).
I λs. s(x) = 3 ∨ s(x) ≤ s(y).
I λs. s(z) · s(z) ≤ s(x) ∧ ¬((s(z) + 1) · (s(z) + 1) ≤ s(x))
I λs. true
I λs. false
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Hoare Triples

Claims about the behavior of commands.

{P} c {Q}
I ”If command c is started in a state satisfying assertion P , and if c

eventually terminates in some final state, then this final state will
satisfy the assertion Q.”

Formally,

{P} c {Q} ⇐⇒ ∀s, s′. (c, s) ⇓ s′ → P (s)→ Q(s).
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Examples

Paraphrase the following Hoare triples in English:

{true} c {x = 5}
{x = m} c {x = m+ 5}
{x ≤ y} c {y ≤ x}
{true} c {false}
{x = m} c {y = m!}
{true} c {z · z ≤ m ∧ ¬((z + 1) · (z + 1) ≤ m)}
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Examples

Which of the following Hoare triples are valid?

{true} x := 5 {x = 5}
{x = 2} x := x+ 1 {x = 3}
{true} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}
{true} skip {false}
{false} skip {true}
{true} while true do skip {false}
{x = 0} while x == 0 do x := x+ 1 {x = 1}
{x = 1} while x 6= 0 do x := x+ 1 {x = 100}
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Two Simple Facts

1 ∀P,Q, c. (∀s. Q(s))→ {P} c {Q}.
2 ∀P,Q, c. (∀s. ¬P (s))→ {P} c {Q}.
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Proof Rules of Hoare Logic

Hoare logic provides a set of proof rules for compositionally proving
the validity of Hoare triples.

I The structure of a program’s correctness mirrors the structure of the
program.

I One rule for reasoning about each of the different syntactic forms of
commands, plus structural rules that are used for gluing things
together.

Hoare triples are proved using the proof rules, without relying on the
definition of Hoare triples.
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Assignment

{Q[x 7→ e]} x := e {Q}

{y = 1} x := y {x = 1}
{?} x := y + z {x = 1}
{?} x := x+ 1 {x ≤ 5}
{?} x := 3 {x = 3}
{?} x := 3 {0 ≤ x ∧ x ≤ 5}
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Skip and Sequence

{P} skip {Q}

{P} c1 {Q} {Q} c2 {R}
{P} c1; c2 {R}
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Consequence

P → P ′ {P ′} c {Q′} Q′ → Q

{P} c {Q}

Hakjoo Oh AAA501 2016 Spring, Lecture 11 May 15, 2016 12 / 16



Conditional

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}
{P} if b c1 c2 {Q}
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Loops

{P ∧ b} c {P}
{P} while b c {P ∧ ¬b}
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Exercise

{x ≤ 3} while x ≤ 2 do x := x+ 1 {x = 3}
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Hoare Logic

Idea: a domain specific logic for reasoning about properties of programs

This hides the low-level details of the semantics of the program

Leads to a compositional reasoning process

{Q[x 7→ e]} x := e {Q}

{P} skip {Q}

{P} c1 {Q} {Q} c2 {R}
{P} c1; c2 {R}

P → P ′ {P ′} c {Q′} Q′ → Q

{P} c {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}
{P} if b c1 c2 {Q}

{P ∧ b} c {P}
{P} while b c {P ∧ ¬b}
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