AAA501: Programing Langauge Theory Lecture 11 — Hoare Logic

Hakjoo Oh 2016 Spring

Acknowledgement

These slides are based on the Hoare Logic chapter of Software Foundations by Pierce et al.

Program Verification

- Using the precise definition of programming languages to formally prove that programs satisfy specifications of their behavior.
- Hoare Logic is a program logic that can be used to reason compositionally about the correctness of programs. Based on two ideas:
 - A natural way of writing down *specifications* of programs.
 - ► A *compositional proof technique* for proving that programs are correct with respect to the specifications.

Assertions

- Properties that hold at particular points during a program's execution.
- Claims about the current state of the memory when program execution reaches that point. Formally, predicates on memory states, i.e., Memory → Bool.
- A set of memory states in which the predicate holds.
- Examples:

Hoare Triples

- Claims about the behavior of commands.
- $\{P\} \ c \ \{Q\}$
 - "If command c is started in a state satisfying assertion P, and if c eventually terminates in some final state, then this final state will satisfy the assertion Q."
- Formally,

$$\{P\} \ c \ \{Q\} \iff orall s, s'. \ (c,s) \Downarrow s' \to P(s) \to Q(s).$$

Examples

Paraphrase the following Hoare triples in English:

•
$$\{true\} c \{x = 5\}$$

• $\{x = m\} c \{x = m + 5\}$
• $\{x \le y\} c \{y \le x\}$
• $\{true\} c \{false\}$
• $\{x = m\} c \{y = m!\}$
• $\{true\} c \{z \cdot z \le m \land \neg((z + 1) \cdot (z + 1) \le m)\}$

Examples

Which of the following Hoare triples are valid?

•
$$\{x = 0\}$$
 while $x == 0$ do $x := x + 1$ $\{x = 1\}$

•
$$\{x = 1\}$$
 while $x \neq 0$ do $x := x + 1$ $\{x = 100\}$

Two Simple Facts

◊ ∀P, Q, c. (∀s. Q(s)) → {P} c {Q}.
◊ ∀P, Q, c. (∀s. ¬P(s)) → {P} c {Q}.

Proof Rules of Hoare Logic

- Hoare logic provides a set of proof rules for compositionally proving the validity of Hoare triples.
 - The structure of a program's correctness mirrors the structure of the program.
 - One rule for reasoning about each of the different syntactic forms of commands, plus structural rules that are used for gluing things together.
- Hoare triples are proved using the proof rules, without relying on the definition of Hoare triples.

Assignment

$$\{Q[x\mapsto e]\}\; x:=e\;\{Q\}$$

•
$$\{y = 1\} x := y \{x = 1\}$$

• $\{?\} x := y + z \{x = 1\}$
• $\{?\} x := x + 1 \{x \le 5\}$
• $\{?\} x := 3 \{x = 3\}$
• $\{?\} x := 3 \{0 \le x \land x \le 5\}$

Skip and Sequence

$\{P\}\ skip\ \{Q\}$

$\frac{\{P\} \ c_1 \ \{Q\} \quad \{Q\} \ c_2 \ \{R\}}{\{P\} \ c_1; c_2 \ \{R\}}$

Consequence

$\frac{P \rightarrow P' \qquad \{P'\} \; c \; \{Q'\} \qquad Q' \rightarrow Q}{\{P\} \; c \; \{Q\}}$

Conditional

$\frac{\{P \land b\} \ c_1 \ \{Q\} \qquad \{P \land \neg b\} \ c_2 \ \{Q\}}{\{P\} \ if \ b \ c_1 \ c_2 \ \{Q\}}$

Loops

$\frac{\{P \land b\} \ c \ \{P\}}{\{P\} \ while \ b \ c \ \{P \land \neg b\}}$

Exercise

$\{x \leq 3\}$ while $x \leq 2$ do x := x + 1 $\{x = 3\}$

Hoare Logic

Idea: a domain specific logic for reasoning about properties of programs

- This hides the low-level details of the semantics of the program
- Leads to a compositional reasoning process

