AAAb528: Computational Logic

Lecture 3 — SAT/SMT Applications

Hakjoo Oh
2025 Spring

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 1/33



The Z3 SMT Solver

@ A popular SMT solver from Microsoft Research:
https://github.com/Z3Prover/z3

@ Supported theories:

» Propositional Logic
Theory of Equality
Uninterpreted Functions
Arithmetic
Arrays
Bit-vectors, ...

vV vy VvYy

v

@ References

» 73 Guide
https://rise4fun.com/z3/tutorialcontent/guide

» Z3 API in Python
http://ericpony.github.io/z3py-tutorial/guide-examples.htm

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 2/33


https://rise4fun.com/z3/tutorialcontent/guide
http://ericpony.github.io/z3py-tutorial/guide-examples.htm

Propositional Logic

1 p = Bool('p’)
> q = Bool('q")
3 r = Bool('r")
4 solve(Implies(p, q), r = Not(q), Or(Not(p), r))

[q = False, p = False, r = Truel

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 3/33



Arithmetic

from z3 import =*

.y < 10, x + 2xy = T7)

x
I
Y
o
j5)
—~
x
\/\;

solve (x*x2 + y*x2 > 3, x*%x3 + y < 5)
$ python test.py

[y =0, x =7]
[x =1/8, y = 2]

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 4/33



BitVectors

1 x = BitVec('x", 32)
2>y = BitVec('y', 32)
3

4 solve(x & y = 7y)
5 solve(x >> 2 = 3)
6 solve(x << 2 = 3)
7 solve(x << 2 = 24)

[y = 4294967295, x = 0]

[x = 12]
no solution
[x = 6]

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 5/33



Uninterpreted Functions

© 0 N o U A W N R

- =
= o

print (m)

= =
A W N

x=0,y
f(f(x))
f(x)

print (" f(f(x))
print (" f(

x = Int('x")
y = Int('y")
f = Function('f', IntSort(), IntSort())
s = Solver ()

s.add(f(f(x)) = x, f(x) =y, x !=y)
print (s.check())

m = s.model ()

)))

”

", m.evaluate (f(f(x)
, m.evaluate (f(x)))

1, £f=[00->1, 1 ->0, else —> 1]]

= O |

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025

6/33



Constraint Generation with Python List

X [ Int('x%s" % i) for i in range(5) ]
Y= Int('y%s' % i) for i in range(5) ]
print (X, Y)

X_plus Y = [ X[i] + Y[i
XogtY = [ X[i] > Y[i]
print (X_plus_Y)

print (X_gt.Y)

a = And(X_gt.Y)

print (a)

solve(a)

] for i in range(5) ]
for i in range(5) ]

© © N o U A W N R

Ll
o

[x0, x1, %2, x3, x4] [y0, y1, y2, y3, y4]

[x0 + yO, x1 + y1, x2 + y2, x3 + y3, x4 + y4]
[x0 > yO, x1 > y1, x2 > y2, x3 > y3, x4 > y4]
And(x0 > yO, x1 > y1, x2 > y2, x3 > y3, x4 > y4)
[y4 =0, x4=1, y3=0, x3=1, y2 =0, x2 =1,
yl1 =0, x1 =1, yo =0, x0 = 1]

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 7/33



Example 1: Program Equivalence

Consider the two code fragments.

if ('a&&'b) then h
else if ('a) then g else f

if (a) then f
else if (b) then g else h

The latter might have been generated from an optimizing compiler. We
would like to prove that the two programs are equivalent.

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 8/33



Encoding in Propositional Logic
The if-then-else construct can be replaced by a PL formula as follows:
if x thenyelse z = (x Ay) VvV (—x A 2)

The problem of checking the equivalence is to check the validity of the
formula:

F:(maAN-b)AhV(maA-b)A(maAgVaAf)
< aANfV-aANn(bAgV-bAh)

If =F is unsatisfiable, the two expressions are equivalent.

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 9/33



In Python

from z3 import *

= Bool ("a")
= Bool ("b")

Bool ("f")
= Bool ("g")
= Bool ("h")

© 00 N O s~ W N =
S0R -~ T O
Il

fl = Or (And (And (Not(a), Not(b)), h), And (Not (And (Not(a
), Not(b))), (Or (And (Not(a).g), And (a,)))))
o f2 = Or (And (a,f), And (Not(a), Or (And(b,g), And(Not(b), h

))))

2 solve (Not (fl=f2))

13

$ python equiv.py
no solution

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 10/33



Example 2: Seat Assignment
Consider three persons A, B, and C who need to be seated in a row. There
are three constraints:

@ A does not want to sit next to C

@ A does not want to sit in the leftmost chair

@ B does not want to sit to the right of C

We would like to check if there is a seat assignment for the three persons
that satisfies the above constraints.

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 11/33



Encoding in Propositional Logic
To encode the problem, let X;; be boolean variables such that
X;j <= person i seats in chair j

We need to encode two types of constraints.
e Valid assignments:
» Every person is seated

AV X
i g

» Every seat is occupied
AV Xis
i i

» One person per seat

/\(X'LJ — /\ _‘Xik:)

2% k#j

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 12/33



Encoding in Propositional Logic

@ Problem constraints:
» A does not want to sit next to C:

(Xoo = X21)A(Xo1 = (mX20AX22))A(Xo2z2 = —X21)

» A does not want to sit in the leftmost chair
» B does not want to sit to the right of C

(X20 = X11) A (X21 = —X12)

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 13/33



In Python

1 from z3 import *

w

X =1 [ Bool ("x-%s-%s" % (i+1, j+1)) for j in range (3) ]
for i in range(3) ]

4
5 # every person is seated

6 val_-cl = []

7 for i in range(3):

8 c = False

9 for j in range(3):

10 c = O0r (c, X[il[i])
11 val_cl.append (c)

12

13 # every seat is occupied

14 val_c2 = []

15 for j in range(3):

16 c¢ = False

17 for i in range(3):

18 c = 0Or (c, X[i][i])
19 val_c2 .append (c)

20

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 14 /33



In Python

1 # one person per seat

2 val_.c3 = []

3 for i in range(3):

4 for j in range(3):

5 ¢ = True

6 for k in range(3):

7 if k<> j:

8 ¢ = And(c, X[i][k] = False)
9 val_c3 .append (Implies (X[i][j] = True, c))
10

11 valid = val_cl + val_c2 + val_c3

12
13 # A does not want to sit next to C

4 ¢l = [ Implies (X[0][0] == True, X[2][1] = False),

15 Implies (X[0][1] = True, And (X[2][0] = False, X
[2][2] = False)),

16 Implies (X[0][2] == True, X[2][1] = False) ]

17

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 15/33



In Python

c =cl + c2 + c3
solve (valid + c)

1 # A does not want to sit in the left chair

2 = [X[0][0] == False]

3

4 # B does not want to sit to the right of C

5 ¢3 = [ Implies (X[2][0] = True, X[1][1] = False),
6 Implies (X[2][1] = True, X[1][2] = False) ]
7

8

9

Ll
S)

$ python equiv.py
no solution

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 16 /33



Example 3: Eight Queens

The eight queens puzzle is the problem of placing eight chess queens on an
8x8 chessboard so that no two queens attack each other. Thus, a solution
requires that no two queens share the same row, column, or diagonal.

N W U1 OO N
N WA U1 OO N

Hakjoo Oh AAA528 2025 Spring, Lecture 3



Encoding
Define boolean variables QQ; as follows:
Q); : the column position of the queen in row 2
e Each queen is in a column {1,...,8}:
8
A1<QinQ; <8
i=1
@ No queens share the same column:
8 8
AN NGC#i = Qi#Q))
i=1j=1
@ No queens share the same diagonal:
8 i
NNGC#i = Qi—-Q;#i—jAQi—Q;#j—1)
i=1j=1

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 18/33



In Python

from z3 import x*

1

2

3 def print_board (r):

4 for i in range(8):

5 for j in range(8):
6 if r[i] = j+1:

7 print (1, end=""),
8 else:

9 print (0, end=""),
10 print ("")

2 Q=1 Int ("Q%i" % (i+1)) for i in range(8) ]

4 val_.c = [ And (1 <= Q[i], Q[i] <= 8) for i in range(8) ]

15 col_c = [ Implies (i !'=j, Q[i] '= Q[j]) for i in range(8)
for j in range(8) ]
s diag.c = [ Implies (i = j, And (Q[i]-Q[j] != i—j, Q[i]-Q[j]

I= j—i)) for i in range(8) for j in range(i) ]

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 19/33



In Python

m =
r =

®w N o 0O hr W N R

0

O O O O O O O &
O O O O O o+ o
O O, O O O O

O O OO O O o

1

=, O O O O O O

O O O = O O
= O O O O O O
O O OO o+~ O

s = Solver ()
s.add (val_-c + col_c + diag-c)
res = s.check()
if res = sat:
s.model ()

[ m.evaluate (Q[i]) for
print_board (r)

print ("")

0

0

python queens.py

0

in

range (8) |

Hakjoo Oh AAA528 2025 Spring, Lecture 3

April 2, 2025

20/33



Finding all solutions:

1 solutions, b, num_of_sols = [], True, 0

2> while b:

3 diff_.c = []

4 for sol in solutions:

5 c = True

6 for i in range(8):

7 c = And(c, sol[i] = Q[i])

8 diff_c.append (Not(c))

9 s = Solver()

0 s.add (val_-c + col_c + diag_-c + diff_c)

11 res = s.check ()

12 if res = sat:

13 num_of_sols, m = num_of_sols + 1, s.model()
14 r = [ m.evaluate (Q[i]) for i in range(8) ]
15 print_board (r)

16 print ("")

17 solutions .append (r)

18 else:

19 if res = unsat: print ("no more solutions”)
20 else: print (" failed to solve”)

01 b = False

» print (" Number of solutions : " + str(num_of_sols))

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 21/33



Example 4: Sudoku

Insert the numbers in the 9 X 9 board so that each row, column, and
3 X 3 boxes must contain digits 1 through 9 exactly once.

8 2 5
6 2
6 1
5
4 2
6
8 5
8 9
5 4 3

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 22/33



Encoding in SMT formulas
X;; : number in position (4, 5), for 2,5 € [1,9]

e Each cell contains a value in {1,...,9}:
8 8
ANNAN1<Xi; <9
i=0j=0
@ Each row contains a digit at most once:
8 8 8
AN NG#Ek = Xi; # Xu)
1=0 j=0 k=0
@ Each column contains a digit at most once:

8 8 8
AN NGC#E = Xij # X))

j=0%=0 k=0

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025

23/33



Encoding in SMT formulas

@ Each 3 X 3 square contains a digit at most once:

2 2 2 2 2

AAAAANGEEVG£T) —

40=0 jo=0 i=0 j=0 /=0 j'=0
X3io+i,3j0+i 7 X3io+i/,3j0+5")
@ Board configuration (stored in B, where 0 means empty):

8 8

A A (Blilli] # 0 = Bli]lj] = Xy)

i=0j=0

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 24 /33



1 X = [ Int ("x%s-%s" % (i+1,j4+1)) for j in range(9) ] for i
in range(9) ]

2

3 # each cell contains a value in {0,...,9}

4 cells_c = []

5 for i in range(9):

6 for j in range(9):

7 cells_c.append (And (1 <= X[i][j], X[i]l[j] <= 9))
8

9 # each row contains a digit at most once

10 rows-c = []

11 for i in range(9):

12 for j in range(9):

13 for k in range(9):

14 rows_c.append (Implies (j!=k, X[i][j]!'=X[i][k]))
15

16 # each column contains a digit at most once

17 cols_c = []

18 for j in range(9):

19 for i in range(9):

20 for k in range(9):

01 cols_c.append (Implies (il=k, X[i][j]'=X[k][]j]))
22

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 25/33



1 # each 3x3 square contains a digit at most once

2 sq.c = []

3 for i0 in range(3):

4 for jO in range(3):

5 for i in range(3):

6 for j in range(3):

7 for i2 in range(3):

8 for j2 in range(3):

9 sq-c.append (Implies (Or (il=i2, jl=

j2), X[3%i0+4i][3%jO+]j] != X[3%i0+i2][3%j0+j2]))
10
i1 ¢ = cells_c 4+ rows_c +cols_c + sq_c
12

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 26 /33



20
21
22

instance = ((0,8,2,0,0,5,0,0,0),
(0,0,0,6,0,0,2,0,0),
(6,0,0,0,0,1,0,0,0),
(5,0,0,0,0,0,0,0,0),
(0,0,0,4,0,2,0,0,0),
(0,0,0,0,0,0,0,0,6),
(0,0,0,8,0,0,0,0,5),
(0,0,8,0,0,9,0,0,0),
(0,0,0,5,0,0,4,3,0))
instance_c = [ If(instance[i][j] = O,
True,
X[i1[j] = instance[i][j])
for i in range(9) for j in range(9) ]
s = Solver ()
s.add (c + instance_c)
if s.check() = sat:
m = s.model ()
r = [ [ mevaluate (X[i][j]) for j in range(9) | for
range (9) |

print_matrix (r)
else:

print (" failed to solve”

Hakjoo Oh

AAA528 2025 Spring, Lecture 3

April 2, 2025

in

27/33



$ python sudoku.py
(s, 8, 2, 9, 7, 5,

(1, 7,
(6, 9
[5, 2
9, 3
(8, 4,
1
5
6

6,

b

-

-

-

b

b

4,
7,
(2,

-

-

© 0 W krr oo NP> O,
OO W o0 NP - N

-
-

Hakjoo Oh AAA528 2025 Spring, Lecture 3

- -

-

- - -

= BN O oo W o

-

- - -

-

-

-

~N © O W N 00~ b

-

- - -

-

- - -

OO 01N WooN -

-

- - -

-

- - -

WKL NN P> 01O O,

-

4],
31,
71,
9],
1],
6],
51,
2],
81]

April 2, 2025

28/33



Exercise 1: Graph Coloring

Given:
e Agraph G = (V, E), where V = {v1,...,v,}and ECV X V.
o A finite set C = {c1,...,c} of colors.

Can we assign each vertex v € V' a color color(v) € C such that for
every edge (v, w) € E, color(v) # color(w)?

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 29/33



Encoding

X;j <= vertex v; is assigned color c;

@ Every vertex is assigned at least one color:

@ Neighbors are not assigned the same color:

@ Every vertex is assigned not more than one color:

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 30/33



Exercise 2: Exact Covering

Consider the matrix:

1 23 45 6 7
A1 001001
B 1001000
C 00011001
D OO1O0110
E 0110011
F 01000 01

e Each row (A, B, ..., F) denotes a subset of X = {1,2,...,7}.

@ A collection of subsets of a set X is called an Exact Cover if it
includes all elements of X while ensuring that each element belongs
to exactly one subset. For example, { B, D, F'} is an Exact Cover,
whereas {B, D, E} or {A, E} are not.

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 31/33



In general, let the set of elements be defined as X = {x1,x2,...,Zm}
(eg, X ={1,2,...,7}), and let Y = {y1,y2,...,Yn} be the set of
given subset names (e.g., Y = {A, B,..., F}). Given a matrix
represented as a function M : Y — 2% (e.g, M(A) = {1,4,7}), a
subset S C Y is called an Exact Cover of X if it satisfies the following
two conditions:

©Q S covers X:
X =) M) (1)
seSs
@ the chosen subsets in M (s) (where s € S) are pairwise disjoint: for

all s1,82 € S,
M (s1) N M(sz) =0 (2)

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 32/33



Encoding

Introduce boolean variables X; (1 <7 < n) and Tj;
(1 <i<n,1<j5 < m)with the following meanings:

X; <= y; €8, Ti; <= x; € M(y;)

In words: X; is true iff subset y; is included in the solution S, and T3, is
true iff element x; is included in subset y;.

Express the two conditions of the Exact Cover (1) and (2) as logical
formulas ®; and ®s, respectively:

Py =
By =

Hakjoo Oh AAA528 2025 Spring, Lecture 3 April 2, 2025 33/33



