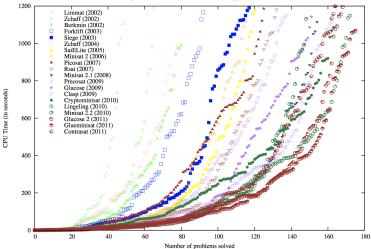
AAA528: Computational Logic Lecture 2 — CDCL SAT Solvers

Hakjoo Oh 2025 Spring

Progress of SAT Solving

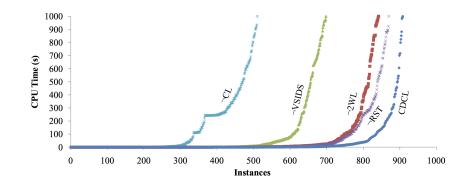


Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

(Courtesy of D. Le-Berre)

March 19, 2025 2 / 21

Impact of CDCL



(Courtesy of Katebi et al. 2011)

Review: DPLL

```
let rec DPLL F =

let F' = BCP(F) in

if F' = \top then true

else if F' = \bot then false

else

let P = Choose(vars(F')) in

(DPLL F'\{P \mapsto \top\}) \lor (DPLL F'\{P \mapsto \bot\})
```

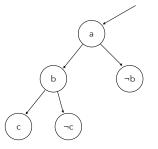
DPLL performs backtrack search, where each step involves

- deciding a variable to branch on,
- propagating logical implication of this decision, and
- backtracking in the case of conflict.

Modern SAT Solving

Three major features of CDCL SAT solvers:

- Non-chronological backtracking
 - > DPLL always backtracks to the most recent decision level.



• Learning from past failures (covered in this lecture)

- ▶ DPLL revisits bad partial assignments that share the same root cause.
- Heuristics for choosing variables and assignments
 - DPLL chooses arbitrary variables.

Decision Variable and Level

DPLL performs a search on a binary tree.

- Decision variable: the assigned variable
- Decision level: the depth of the binary tree at which the decision is made, starting from 1.
 - The assignments implied by a decision (via BCP) are associated with the level of the decision.

Example:

$$(\neg P \lor Q) \land (R \lor \neg Q \lor S)$$

- Choose P and assign $P = \top$: P is the decision variable at level 1.
- With BCP, Q is assigned op at level 1.
- Choose R and assign $R = \bot$ at decision level 2.
- BCP deduces $S = \top$. The decision level of S is 2.

Example (Decision Level and Antecedents)

Consider the CNF formula:

$$egin{array}{rcl} \phi&=&w_1\wedge w_2\wedge w_3\ &=&(x_1ee
eg x_4)\wedge (x_1ee x_3)\wedge (
eg x_3ee x_2ee x_4) \end{array}$$

- Assume the decision assignment: $x_4 = 0@1$.
- Unit propagation yields no additional implications.
- The second decision: $x_1 = 0@2$.
- Unit propagation yields implied assignments $x_3 = 1@2$ and $x_2 = 1@2$.

•
$$lpha(x_3)=w_2$$
 and $lpha(x_2)=w_3$.

• $\alpha(x)$: the *antecedent* of x, the unit clause used for implying x

•
$$\delta(x_4)=1$$
 and $\delta(x_3)=2$

•
$$\delta(x) \in \{-1,0,1,\ldots,|X|\}$$
: the decision level of x

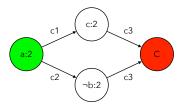
Implication Graph

- An implication graph is a labelled directed acyclic graph G(V,E)
- Nodes (V) are the literals in the current partial assignment. Each node is labelled with the literal and the decision level at which it is assigned.
 - $x_i: dl: x_i$ was assigned to \top at decision level dl.
 - $\neg x_i: dl: x_i$ was assigned to \perp at decision level dl.
- E denotes the set of directed edges labelled with clauses: $l \stackrel{c}{\rightarrow} l'$.
- Edges from l_1, \ldots, l_k to l labelled with c mean that assignments l_1, \ldots, l_k caused assignment l due to clause c during BCP.
 - ▶ If l' is implied from c, then there is a directed edge from l to l' where $\neg l \in c$. (if $l \xrightarrow{c} l'$, then $\neg l \in c$)
- A special node C (or κ) is called the conflict node. C is generated when unit propagation yields an unsatisfied clause (c). $\alpha(C) = c$.
- Edge to conflict node labeled with *c*: current partial assignment contradicts clause *c*.

Example 1

$$c_1:(\neg a \lor c) \quad c_2:(\neg a \lor \neg b) \quad c_3:(\neg c \lor b)$$

- Assume a is assigned \top at decision level 2.
- The implication graph:



- The root node denotes the decision literal.
- ▶ $a \xrightarrow{c_1} c$: assignment $a = \top$ caused assignment $c = \top$ due to clause c_1 during BCP. Similar for $a \xrightarrow{c_2} \neg b$.
- ▶ $c \xrightarrow{c_3} C$ and $b \xrightarrow{c_3} C$: assignments $c = \top$ and $b = \bot$ caused a contradiction due to clause c_3 .

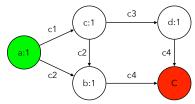
Example 2

$$c_1:(\neg a \lor c) \quad c_2:(\neg c \lor \neg a \lor b) \quad c_3:(\neg c \lor d) \quad c_4:(\neg d \lor \neg b)$$

- Assume a is assigned \top at decision level 1.
- During BCP,
 - $a = \top$ causes $c = \top$ due to $c_1: a \stackrel{c_1}{\rightarrow} c$.
 - ▶ $a = \top$ and $c = \top$ cause $b = \top$ due to c_2 : $a \stackrel{c_2}{\rightarrow} b$ and $c \stackrel{c_2}{\rightarrow} b$.

•
$$c = \top$$
 causes $d = \top$ due to c_3 : $c \stackrel{c_3}{\rightarrow} d$.

- Assignments b = ⊤ and d = ⊤ cause a contradiction due to c₄:
 b ^{c₄}→ C and d ^{c₄}→ C.
- The implication graph:

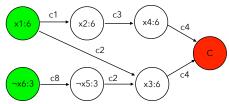


Example 3

Consider a formula that contains the following clauses, among others:

 $\begin{array}{lll} c_1:(\neg x_1 \lor x_2) & c_2:(\neg x_1 \lor x_3 \lor x_5) & c_3:(\neg x_2 \lor x_4) & c_4:(\neg x_3 \lor \neg x_4) \\ c_5:(x_1 \lor x_5 \lor \neg x_2) & c_6:(x_2 \lor x_3) & c_7:(x_2 \lor \neg x_3) & c_8:(x_6 \lor \neg x_5) \end{array}$

- Assume that at decision level 3 the decision was $\neg x_6$, which implied $\neg x_5$ due to c_8 .
- Assume further that the solver is now at decision level 6 and assigns x₁ = ⊤. At decision levels 4 and 5, variables other than x₁,..., x₆ were assigned and not relevant to these clauses.
- The (partial) implication graph:



Exercise

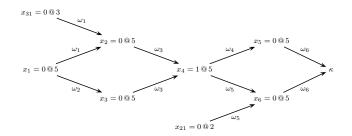
Consider the CNF formula:

$$\begin{aligned} \varphi_1 &= \omega_1 \wedge \omega_2 \wedge \omega_3 \wedge \omega_4 \wedge \omega_5 \wedge \omega_6 \\ &= (x_1 \vee x_{31} \vee \neg x_2) \wedge (x_1 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge \\ & (\neg x_4 \vee \neg x_5) \wedge (x_{21} \vee \neg x_4 \vee \neg x_6) \wedge (x_5 \vee x_6) \end{aligned}$$

- Assume decision assignments $x_{21} = 0@2$ and $x_{31} = 0@3$
- The current decision assignment: $x_1 = 0@5$.

The implication graph:

Conflict Clause



- From this failure, we learn that $\neg x_1 \land \neg x_{31} \land \neg x_{21}$ leads to a conflict.
- To avoid the conflict, the solver learns a conflict clause

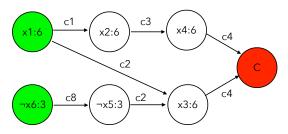
$$c_9: x_1 \vee x_{31} \vee x_{21}$$

and adds it to the formula. This process of adding conflict clauses is the solver's way to learn from its past mistakes.

• Conflict clauses prune the search space (and also have an impact on the decision heuristic).

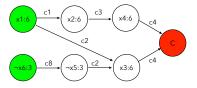
Exercise

Find a conflict clause from the failure:



Learning a Conflict Clause via Resolution

 $\begin{array}{cccc} c_1:(\neg x_1 \lor x_2) & c_2:(\neg x_1 \lor x_3 \lor x_5) & c_3:(\neg x_2 \lor x_4) & c_4:(\neg x_3 \lor \neg x_4) \\ c_5:(x_1 \lor x_5 \lor \neg x_2) & c_6:(x_2 \lor x_3) & c_7:(x_2 \lor \neg x_3) & c_8:(x_6 \lor \neg x_5) \end{array}$



- Start from the unsatisfied clause: $c:=c_4=(
 eg x_3 \lor
 eg x_4)$
- Pick the implied literal with the current decision level (6) in c: e.g., x_3
- Pick any incoming edge (antecedent) of x_3 : $c_2 = (\neg x_1 \lor x_3 \lor x_5)$
- Resolve c_4 and c_2 : $c := (\neg x_1 \lor \neg x_4 \lor x_5)$
- Pick the implied literal with level 6: $\neg x_4$
- Plck the incoming edge of x_4 : $c_3 = (\neg x_2 \lor x_4)$
- Resolve c_3 and $c_{:} c := (\neg x_1 \lor \neg x_2 \lor x_5)$
- Pick the implied literal with level 6: $\neg x_2$
- Pick the incoming edge: $c_1 = (\neg x_1 \lor x_2)$
- Resolve c_1 with $c: c := (\neg x_1 \lor x_5)$. No more resolutions (no literal with the current decision level and incoming edge).

Learning a Conflict Clause via Resolution

The clause learning procedure:

$$\omega_L^{d,i} = \begin{cases} \alpha(\kappa) & \text{if } i = 0\\ \omega_L^{d,i-1} \odot \alpha(l) & \text{if } i \neq 0 \land \xi(\omega_L^{d,i-1}, l, d) = 1\\ \omega_L^{d,i-1} & \text{if } i \neq 0 \land \forall_l \xi(\omega_L^{d,i-1}, l, d) = 0 \end{cases}$$

- $lpha(\kappa)$: all literals in the unsatisfied clause
- $\xi(\omega, l, d)$ is true if a clause ω has an implied literal l assigned at the current decision level d:

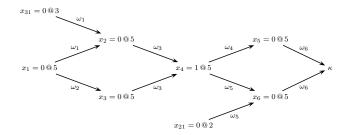
$$\xi(\omega, l, d) \iff l \in \omega \wedge \delta(l) = d \wedge \alpha(l)
eq \mathsf{NIL}$$

- When i = 0, the clause is set to the unsatisfied clause $lpha(\kappa)$.
- At each step *i*, a literal *l* assigned at the current decision level *d* is selected and the intermediate clause is resolved with the antecedent of *l*.

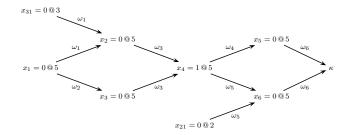
Exercise

Apply the clause learning procedure to the example:

$$\begin{aligned} \varphi_1 &= \omega_1 \wedge \omega_2 \wedge \omega_3 \wedge \omega_4 \wedge \omega_5 \wedge \omega_6 \\ &= (x_1 \vee x_{31} \vee \neg x_2) \wedge (x_1 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge \\ (\neg x_4 \vee \neg x_5) \wedge (x_{21} \vee \neg x_4 \vee \neg x_6) \wedge (x_5 \vee x_6) \end{aligned}$$



Heuristic for Deriving Smaller Conflict Clause



Goal: Learning a smaller conflict clause $\neg x_4 \lor x_{21}$.

- Find first unique implication point (UIP): $x_4 = 1@5$.
 - All paths from current decision node to the conflict node must go through UIP. First UIP is closest to conflict node.
- Stop clause learning at the first UIP.

18 / 21

Clause Learning with UIPs

- Observation: In the implication graph, there is a UIP at decision level d, when the number of literals in ω^{d,i}_L assigned at decision level d is 1.
- Let $\sigma(\omega, d)$ be the number of literals in ω assigned at decision level d:

$$\sigma(\omega,d) = |\{l \in \omega \mid \delta(l) = d\}|$$

• The clause learning procedure with UIPs:

$$w_L^{d,i} = \left\{egin{array}{ll} lpha(\kappa) & ext{if } i=0 \ w_L^{d,i-1} & ext{if } i
eq 0 \wedge \sigma(w_L^{d,i-1},d) = 1 \ w_L^{d,i-1}\odotlpha(l) & ext{if } i
eq 0 \wedge \xi(w_L^{d,i-1},l,d) = 1 \end{array}
ight.$$

• Example:

 $\begin{array}{ll} w_L^{5,0} = \{x_5, x_6\} & \mbox{ Literals in } \alpha(\kappa) \\ w_L^{5,1} = \{\neg x_4, x_6\} & \mbox{ Resolve with } \alpha(x_5) = \omega_4 \\ w_L^{5,2} = \{\neg x_4, x_{21}\} & \mbox{ No more resolution applicable} \end{array}$

CDCL Algorithm

Algorithm 1 Typical CDCL algorithm

$CDCL(\varphi, \nu)$

```
if (UNITPROPAGATION(\varphi, \nu) = = CONFLICT)
        then return UNSAT
 2
    dl \leftarrow 0
 3
                                                      ▷ Decision level
    while (not ALLVARIABLESASSIGNED(\varphi, \nu))
 4
           do (x, v) = \text{PickBranchingVariable}(\varphi, \nu)
5
                                                                                        ▷ Decide stage
               dl \leftarrow dl + 1
                                                      > Increment decision level due to new decision
6
               \nu \leftarrow \nu \cup \{(x,v)\}
 7
               if (UNITPROPAGATION(\varphi, \nu) == CONFLICT)
8
                                                                                       ▷ Deduce stage
9
                  then \beta = \text{CONFLICTANALYSIS}(\varphi, \nu)
                                                                                     ▷ Diagnose stage
10
                         if (\beta < 0)
                            then return UNSAT
11
12
                            else Backtrack(\varphi, \nu, \beta)
13
                                                      > Decrement decision level due to backtracking
                                   dl \leftarrow \beta
    return SAT
14
```

- CONFLICTANALYSIS analyzes the most recent conflict, learns a new clause from the conflict, and returns a backtracking level.
- BACKTRACK backtracks to the decision level computed by CONFLICTANALYSIS.

Hakjoo Oh

Summary

- Conflict-Driven Clause Learning
- Modern CDCL SAT solvers involves a number of additional issues:
 - Variable selection heuristics
 - Lazy data structures
 - Periodic restart of backtrack search
 - Deletion policies for learnt clauses
 - ▶ ...
- Slides are based on the following references:
 - Decision Procedures. Springer
 - Handbook of Satisfiability. IOS Press
 - http://www.cs.utexas.edu/~isil/cs389L/lecture3-6up.pdf

21 / 21