
AAA528: Computational Logic

Lecture 2 — CDCL SAT Solvers

Hakjoo Oh
2025 Spring

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 1 / 21

Progress of SAT Solving

(Courtesy of D. Le-Berre)

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 2 / 21

Impact of CDCL

(Courtesy of Katebi et al. 2011)

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 3 / 21

Review: DPLL

let rec DPLL F =
let F ′ = BCP(F) in
if F ′ = ⊤ then true
else if F ′ = ⊥ then false
else
let P = Choose(vars(F ′)) in
(DPLL F ′{P 7→ ⊤}) ∨ (DPLL F ′{P 7→ ⊥})

DPLL performs backtrack search, where each step involves

deciding a variable to branch on,

propagating logical implication of this decision, and

backtracking in the case of conflict.

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 4 / 21

Modern SAT Solving

Three major features of CDCL SAT solvers:

Non-chronological backtracking
▶ DPLL always backtracks to the most recent decision level.

a

b

c ¬c

¬b

Learning from past failures (covered in this lecture)
▶ DPLL revisits bad partial assignments that share the same root cause.

Heuristics for choosing variables and assignments
▶ DPLL chooses arbitrary variables.

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 5 / 21

Decision Variable and Level

DPLL performs a search on a binary tree.

Decision variable: the assigned variable

Decision level: the depth of the binary tree at which the decision is
made, starting from 1.

▶ The assignments implied by a decision (via BCP) are associated with
the level of the decision.

Example:
(¬P ∨ Q) ∧ (R ∨ ¬Q ∨ S)

Choose P and assign P = ⊤: P is the decision variable at level 1.

With BCP, Q is assigned ⊤ at level 1.

Choose R and assign R = ⊥ at decision level 2.

BCP deduces S = ⊤. The decision level of S is 2.

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 6 / 21

Example (Decision Level and Antecedents)

Consider the CNF formula:

ϕ = w1 ∧ w2 ∧ w3

= (x1 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x3 ∨ x2 ∨ x4)

Assume the decision assignment: x4 = 0@1.

Unit propagation yields no additional implications.

The second decision: x1 = 0@2.

Unit propagation yields implied assignments x3 = 1@2 and
x2 = 1@2.

α(x3) = w2 and α(x2) = w3.
▶ α(x): the antecedent of x, the unit clause used for implying x

δ(x4) = 1 and δ(x3) = 2
▶ δ(x) ∈ {−1, 0, 1, . . . , |X|}: the decision level of x

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 7 / 21

Implication Graph

An implication graph is a labelled directed acyclic graph G(V,E)

Nodes (V) are the literals in the current partial assignment. Each
node is labelled with the literal and the decision level at which it is
assigned.

▶ xi : dl: xi was assigned to ⊤ at decision level dl.
▶ ¬xi : dl: xi was assigned to ⊥ at decision level dl.

E denotes the set of directed edges labelled with clauses: l
c→ l′.

Edges from l1, . . . , lk to l labelled with c mean that assignments
l1, . . . , lk caused assignment l due to clause c during BCP.

▶ If l′ is implied from c, then there is a directed edge from l to l′ where
¬l ∈ c. (if l

c→ l′, then ¬l ∈ c)

A special node C (or κ) is called the conflict node. C is generated
when unit propagation yields an unsatisfied clause (c). α(C) = c.

Edge to conflict node labeled with c: current partial assignment
contradicts clause c.

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 8 / 21

Example 1

c1 : (¬a ∨ c) c2 : (¬a ∨ ¬b) c3 : (¬c ∨ b)

Assume a is assigned ⊤ at decision level 2.

The implication graph:

a:2

c:2

¬b:2

C

c1

c2

c3

c3

▶ The root node denotes the decision literal.
▶ a

c1→ c: assignment a = ⊤ caused assignment c = ⊤ due to clause

c1 during BCP. Similar for a
c2→ ¬b.

▶ c
c3→ C and b

c3→ C: assignments c = ⊤ and b = ⊥ caused a
contradiction due to clause c3.

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 9 / 21

Example 2

c1 : (¬a ∨ c) c2 : (¬c ∨ ¬a ∨ b) c3 : (¬c ∨ d) c4 : (¬d ∨ ¬b)

Assume a is assigned ⊤ at decision level 1.
During BCP,

▶ a = ⊤ causes c = ⊤ due to c1: a
c1→ c.

▶ a = ⊤ and c = ⊤ cause b = ⊤ due to c2: a
c2→ b and c

c2→ b.
▶ c = ⊤ causes d = ⊤ due to c3: c

c3→ d.
▶ Assignments b = ⊤ and d = ⊤ cause a contradiction due to c4:

b
c4→ C and d

c4→ C.

The implication graph:

a:1

c:1

b:1 C

c1

c2

c3

c4

d:1

c2 c4

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 10 / 21

Example 3

Consider a formula that contains the following clauses, among others:

c1 : (¬x1 ∨ x2) c2 : (¬x1 ∨ x3 ∨ x5) c3 : (¬x2 ∨ x4) c4 : (¬x3 ∨ ¬x4)
c5 : (x1 ∨ x5 ∨ ¬x2) c6 : (x2 ∨ x3) c7 : (x2 ∨ ¬x3) c8 : (x6 ∨ ¬x5)

Assume that at decision level 3 the decision was ¬x6, which implied
¬x5 due to c8.

Assume further that the solver is now at decision level 6 and assigns
x1 = ⊤. At decision levels 4 and 5, variables other than x1, . . . , x6

were assigned and not relevant to these clauses.

The (partial) implication graph:

x1:6 x2:6 x4:6

x3:6¬x6:3 ¬x5:3

C

c1

c2

c2c8

c3
c4

c4

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 11 / 21

Exercise

Consider the CNF formula:

Chapter 4. CDCL Solvers 131

x31 = 0@3

x2 = 0@5

x1 = 0@5 x4 = 1@ 5

x3 = 0@5

ω1

ω1

ω2

ω3

ω3

Figure 4.1. Implication graph for example 4.2.3

x31 = 0@ 3

x2 = 0@ 5 x5 = 0@ 5

x1 = 0@ 5 x4 = 1@ 5 κ

x3 = 0@ 5 x6 = 0@ 5

x21 = 0@ 2

ω1

ω1

ω2

ω3

ω3

ω4

ω5

ω6

ω6

ω5

Figure 4.2. Implication graph for example 4.2.4

Example 4.2.3 (Implication Graph without Conflict). Consider the CNF for-
mula:

ω1 = ω1 → ω2 → ω3

= (x1 ∨ x31 ∨ ¬x2) → (x1 ∨ ¬x3) → (x2 ∨ x3 ∨ x4)
(4.13)

Assume decision assignment x31 = 0@3. Moreover, assume that the current
decision assignment is x1 = 0@5. The resulting implication graph is shown in
figure 4.1.

Example 4.2.4 (Implication Graph with Conflict). Consider the CNF formula:

ω1 = ω1 → ω2 → ω3 → ω4 → ω5 → ω6

= (x1 ∨ x31 ∨ ¬x2) → (x1 ∨ ¬x3) → (x2 ∨ x3 ∨ x4)→
(¬x4 ∨ ¬x5) → (x21 ∨ ¬x4 ∨ ¬x6) → (x5 ∨ x6)

(4.14)

Assume decision assignments x21 = 0@2 and x31 = 0@3. Moreover, assume the
current decision assignment x1 = 0@5. The resulting implication graph is shown
in figure 4.2, and yields a conflict because clause (x5 ∨ x6) becomes unsatisfied.

4.3. Organization of CDCL Solvers

Algorithm 1 shows the standard organization of a CDCL SAT solver, which es-
sentially follows the organization of DPLL. With respect to DPLL, the main

Assume decision assignments x21 = 0@2 and x31 = 0@3

The current decision assignment: x1 = 0@5.

The implication graph:

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 12 / 21

Conflict Clause

Chapter 4. CDCL Solvers 131

x31 = 0@3

x2 = 0@5

x1 = 0@5 x4 = 1@ 5

x3 = 0@5

ω1

ω1

ω2

ω3

ω3

Figure 4.1. Implication graph for example 4.2.3

x31 = 0@ 3

x2 = 0@ 5 x5 = 0@ 5

x1 = 0@ 5 x4 = 1@ 5 κ

x3 = 0@ 5 x6 = 0@ 5

x21 = 0@ 2

ω1

ω1

ω2

ω3

ω3

ω4

ω5

ω6

ω6

ω5

Figure 4.2. Implication graph for example 4.2.4

Example 4.2.3 (Implication Graph without Conflict). Consider the CNF for-
mula:

ω1 = ω1 → ω2 → ω3

= (x1 ∨ x31 ∨ ¬x2) → (x1 ∨ ¬x3) → (x2 ∨ x3 ∨ x4)
(4.13)

Assume decision assignment x31 = 0@3. Moreover, assume that the current
decision assignment is x1 = 0@5. The resulting implication graph is shown in
figure 4.1.

Example 4.2.4 (Implication Graph with Conflict). Consider the CNF formula:

ω1 = ω1 → ω2 → ω3 → ω4 → ω5 → ω6

= (x1 ∨ x31 ∨ ¬x2) → (x1 ∨ ¬x3) → (x2 ∨ x3 ∨ x4)→
(¬x4 ∨ ¬x5) → (x21 ∨ ¬x4 ∨ ¬x6) → (x5 ∨ x6)

(4.14)

Assume decision assignments x21 = 0@2 and x31 = 0@3. Moreover, assume the
current decision assignment x1 = 0@5. The resulting implication graph is shown
in figure 4.2, and yields a conflict because clause (x5 ∨ x6) becomes unsatisfied.

4.3. Organization of CDCL Solvers

Algorithm 1 shows the standard organization of a CDCL SAT solver, which es-
sentially follows the organization of DPLL. With respect to DPLL, the main

From this failure, we learn that ¬x1 ∧ ¬x31 ∧ ¬x21 leads to a
conflict.
To avoid the conflict, the solver learns a conflict clause

c9 : x1 ∨ x31 ∨ x21

and adds it to the formula. This process of adding conflict clauses is
the solver’s way to learn from its past mistakes.
Conflict clauses prune the search space (and also have an impact on
the decision heuristic).

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 13 / 21

Exercise

Find a conflict clause from the failure:

x1:6 x2:6 x4:6

x3:6¬x6:3 ¬x5:3

C

c1

c2

c2c8

c3
c4

c4

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 14 / 21

Learning a Conflict Clause via Resolution
c1 : (¬x1 ∨ x2) c2 : (¬x1 ∨ x3 ∨ x5) c3 : (¬x2 ∨ x4) c4 : (¬x3 ∨ ¬x4)
c5 : (x1 ∨ x5 ∨ ¬x2) c6 : (x2 ∨ x3) c7 : (x2 ∨ ¬x3) c8 : (x6 ∨ ¬x5)

x1:6 x2:6 x4:6

x3:6¬x6:3 ¬x5:3

C

c1

c2

c2c8

c3
c4

c4

Start from the unsatisfied clause: c := c4 = (¬x3 ∨ ¬x4)

Pick the implied literal with the current decision level (6) in c: e.g., x3

Pick any incoming edge (antecedent) of x3: c2 = (¬x1 ∨ x3 ∨ x5)

Resolve c4 and c2: c := (¬x1 ∨ ¬x4 ∨ x5)

Pick the implied literal with level 6: ¬x4

PIck the incoming edge of x4: c3 = (¬x2 ∨ x4)

Resolve c3 and c: c := (¬x1 ∨ ¬x2 ∨ x5)

Pick the implied literal with level 6: ¬x2

Pick the incoming edge: c1 = (¬x1 ∨ x2)

Resolve c1 with c: c := (¬x1 ∨ x5). No more resolutions (no literal with the
current decision level and incoming edge).

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 15 / 21

Learning a Conflict Clause via Resolution

The clause learning procedure:

Chapter 4. CDCL Solvers 133

solver to be kept under control.

4.4. Conflict Analysis

This section outlines the conflict analysis procedure used by modern SAT solvers.

4.4.1. Learning Clauses from Conflicts

Each time the CDCL SAT solver identifies a conflict due to unit propagation, the
ConflictAnalysis procedure is invoked. As a result, one or more new clauses
are learnt, and a backtracking decision level is computed. The conflict analysis
procedure analyzes the structure of unit propagation and decides which literals
to include in the learnt clause.

The decision levels associated with assigned variables define a partial order
of the variables. Starting from a given unsatisfied clause (represented in the
implication graph with vertex ω), the conflict analysis procedure visits variables
implied at the most recent decision level (i.e. the current largest decision level),
identifies the antecedents of visited variables, and keeps from the antecedents the
literals assigned at decision levels less than the most recent decision level. This
process is repeated until the most recent decision variable is visited.

Let d be the current decision level, let xi be the decision variable, let ν(xi) = v
be the decision assignment, and let ωj be an unsatisfied clause identified with unit
propagation. In terms of the implication graph, the conflict vertex ω is such that
α(ω) = ωj. Moreover, let → represent the resolution operator. For two clauses ωj

and ωk, for which there is a unique variable x such that one clause has a literal
x and the other has literal ¬x, ωj → ωk contains all the literals of ωj and ωk with
the exception of x and ¬x.

The clause learning procedure used in SAT solvers can be defined by a se-
quence of selective resolution operations [MSS00, BKS04], that at each step yields
a new temporary clause. First, define a predicate that holds if a clause ω has an
implied literal l assigned at the current decision level d:

ξ(ω, l, d) =

{
1 if l ∈ ω ∧ δ(l) = d ∧ α(l) $= NIL
0 otherwise

(4.15)

Let ωd,i
L , with i = 0, 1, ..., be the intermediate clause obtained after i resolution

operations. Using the predicate defined by (4.15), this intermediate clause can
be defined as follows:

ωd,i
L =

α(ω) if i = 0

ωd,i−1
L → α(l) if i $= 0 ∧ ξ(ωd,i−1

L , l, d) = 1

ωd,i−1
L if i $= 0 ∧ ∀l ξ(ωd,i−1

L , l, d) = 0

(4.16)

Equation (4.16) can be used for formalizing the clause learning procedure.
The first condition, i = 0, denotes the initialization step given ω in I, where all
literals in the unsatisfied clause are added to the first intermediate clause clause.
Afterwards, at each step i, a literal l assigned at the current decision level d is

α(κ): all literals in the unsatisfied clause

ξ(ω, l, d) is true if a clause ω has an implied literal l assigned at the
current decision level d:

ξ(ω, l, d) ⇐⇒ l ∈ ω ∧ δ(l) = d ∧ α(l) ̸= NIL

When i = 0, the clause is set to the unsatisfied clause α(κ).

At each step i, a literal l assigned at the current decision level d is
selected and the intermediate clause is resolved with the antecedent
of l.

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 16 / 21

Exercise

Apply the clause learning procedure to the example:

Chapter 4. CDCL Solvers 131

x31 = 0@3

x2 = 0@5

x1 = 0@5 x4 = 1@ 5

x3 = 0@5

ω1

ω1

ω2

ω3

ω3

Figure 4.1. Implication graph for example 4.2.3

x31 = 0@ 3

x2 = 0@ 5 x5 = 0@ 5

x1 = 0@ 5 x4 = 1@ 5 κ

x3 = 0@ 5 x6 = 0@ 5

x21 = 0@ 2

ω1

ω1

ω2

ω3

ω3

ω4

ω5

ω6

ω6

ω5

Figure 4.2. Implication graph for example 4.2.4

Example 4.2.3 (Implication Graph without Conflict). Consider the CNF for-
mula:

ω1 = ω1 → ω2 → ω3

= (x1 ∨ x31 ∨ ¬x2) → (x1 ∨ ¬x3) → (x2 ∨ x3 ∨ x4)
(4.13)

Assume decision assignment x31 = 0@3. Moreover, assume that the current
decision assignment is x1 = 0@5. The resulting implication graph is shown in
figure 4.1.

Example 4.2.4 (Implication Graph with Conflict). Consider the CNF formula:

ω1 = ω1 → ω2 → ω3 → ω4 → ω5 → ω6

= (x1 ∨ x31 ∨ ¬x2) → (x1 ∨ ¬x3) → (x2 ∨ x3 ∨ x4)→
(¬x4 ∨ ¬x5) → (x21 ∨ ¬x4 ∨ ¬x6) → (x5 ∨ x6)

(4.14)

Assume decision assignments x21 = 0@2 and x31 = 0@3. Moreover, assume the
current decision assignment x1 = 0@5. The resulting implication graph is shown
in figure 4.2, and yields a conflict because clause (x5 ∨ x6) becomes unsatisfied.

4.3. Organization of CDCL Solvers

Algorithm 1 shows the standard organization of a CDCL SAT solver, which es-
sentially follows the organization of DPLL. With respect to DPLL, the main

Chapter 4. CDCL Solvers 131

x31 = 0@3

x2 = 0@5

x1 = 0@5 x4 = 1@ 5

x3 = 0@5

ω1

ω1

ω2

ω3

ω3

Figure 4.1. Implication graph for example 4.2.3

x31 = 0@ 3

x2 = 0@ 5 x5 = 0@ 5

x1 = 0@ 5 x4 = 1@ 5 κ

x3 = 0@ 5 x6 = 0@ 5

x21 = 0@ 2

ω1

ω1

ω2

ω3

ω3

ω4

ω5

ω6

ω6

ω5

Figure 4.2. Implication graph for example 4.2.4

Example 4.2.3 (Implication Graph without Conflict). Consider the CNF for-
mula:

ω1 = ω1 → ω2 → ω3

= (x1 ∨ x31 ∨ ¬x2) → (x1 ∨ ¬x3) → (x2 ∨ x3 ∨ x4)
(4.13)

Assume decision assignment x31 = 0@3. Moreover, assume that the current
decision assignment is x1 = 0@5. The resulting implication graph is shown in
figure 4.1.

Example 4.2.4 (Implication Graph with Conflict). Consider the CNF formula:

ω1 = ω1 → ω2 → ω3 → ω4 → ω5 → ω6

= (x1 ∨ x31 ∨ ¬x2) → (x1 ∨ ¬x3) → (x2 ∨ x3 ∨ x4)→
(¬x4 ∨ ¬x5) → (x21 ∨ ¬x4 ∨ ¬x6) → (x5 ∨ x6)

(4.14)

Assume decision assignments x21 = 0@2 and x31 = 0@3. Moreover, assume the
current decision assignment x1 = 0@5. The resulting implication graph is shown
in figure 4.2, and yields a conflict because clause (x5 ∨ x6) becomes unsatisfied.

4.3. Organization of CDCL Solvers

Algorithm 1 shows the standard organization of a CDCL SAT solver, which es-
sentially follows the organization of DPLL. With respect to DPLL, the main

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 17 / 21

Heuristic for Deriving Smaller Conflict Clause

Chapter 4. CDCL Solvers 131

x31 = 0@3

x2 = 0@5

x1 = 0@5 x4 = 1@ 5

x3 = 0@5

ω1

ω1

ω2

ω3

ω3

Figure 4.1. Implication graph for example 4.2.3

x31 = 0@ 3

x2 = 0@ 5 x5 = 0@ 5

x1 = 0@ 5 x4 = 1@ 5 κ

x3 = 0@ 5 x6 = 0@ 5

x21 = 0@ 2

ω1

ω1

ω2

ω3

ω3

ω4

ω5

ω6

ω6

ω5

Figure 4.2. Implication graph for example 4.2.4

Example 4.2.3 (Implication Graph without Conflict). Consider the CNF for-
mula:

ω1 = ω1 → ω2 → ω3

= (x1 ∨ x31 ∨ ¬x2) → (x1 ∨ ¬x3) → (x2 ∨ x3 ∨ x4)
(4.13)

Assume decision assignment x31 = 0@3. Moreover, assume that the current
decision assignment is x1 = 0@5. The resulting implication graph is shown in
figure 4.1.

Example 4.2.4 (Implication Graph with Conflict). Consider the CNF formula:

ω1 = ω1 → ω2 → ω3 → ω4 → ω5 → ω6

= (x1 ∨ x31 ∨ ¬x2) → (x1 ∨ ¬x3) → (x2 ∨ x3 ∨ x4)→
(¬x4 ∨ ¬x5) → (x21 ∨ ¬x4 ∨ ¬x6) → (x5 ∨ x6)

(4.14)

Assume decision assignments x21 = 0@2 and x31 = 0@3. Moreover, assume the
current decision assignment x1 = 0@5. The resulting implication graph is shown
in figure 4.2, and yields a conflict because clause (x5 ∨ x6) becomes unsatisfied.

4.3. Organization of CDCL Solvers

Algorithm 1 shows the standard organization of a CDCL SAT solver, which es-
sentially follows the organization of DPLL. With respect to DPLL, the main

Goal: Learning a smaller conflict clause ¬x4 ∨ x21.
1 Find first unique implication point (UIP): x4 = 1@5.

▶ All paths from current decision node to the conflict node must go
through UIP. First UIP is closest to conflict node.

2 Stop clause learning at the first UIP.

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 18 / 21

Clause Learning with UIPs

Observation: In the implication graph, there is a UIP at decision level
d, when the number of literals in ωd,i

L assigned at decision level d is 1.

Let σ(ω, d) be the number of literals in ω assigned at decision level
d:

σ(ω, d) = |{l ∈ ω | δ(l) = d}|

The clause learning procedure with UIPs:

wd,i
L =

α(κ) if i = 0

wd,i−1
L if i ̸= 0 ∧ σ(wd,i−1

L , d) = 1

wd,i−1
L ⊙ α(l) if i ̸= 0 ∧ ξ(wd,i−1

L , l, d) = 1

Example:

w5,0
L = {x5, x6} Literals in α(κ)

w5,1
L = {¬x4, x6} Resolve with α(x5) = ω4

w5,2
L = {¬x4, x21} No more resolution applicable

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 19 / 21

CDCL Algorithm
132 Chapter 4. CDCL Solvers

Algorithm 1 Typical CDCL algorithm

CDCL(ϕ, ν)

1 if (UnitPropagation(ϕ, ν) == CONFLICT)
2 then return UNSAT
3 dl← 0 ✄ Decision level
4 while (not AllVariablesAssigned(ϕ, ν))
5 do (x, v) = PickBranchingVariable(ϕ, ν) ✄ Decide stage
6 dl← dl + 1 ✄ Increment decision level due to new decision
7 ν ← ν ∪ {(x, v)}
8 if (UnitPropagation(ϕ, ν) == CONFLICT) ✄ Deduce stage
9 then β = ConflictAnalysis(ϕ, ν) ✄ Diagnose stage

10 if (β < 0)
11 then return UNSAT
12 else Backtrack(ϕ, ν, β)
13 dl← β ✄ Decrement decision level due to backtracking
14 return SAT

differences are the call to function ConflictAnalysis each time a conflict is
identified, and the call to Backtrack when backtracking takes place. Moreover,
the Backtrack procedure allows for backtracking non-chronologically.

In addition to the main CDCL function, the following auxiliary functions are
used:

• UnitPropagation consists of the iterated application of the unit clause
rule. If an unsatisfied clause is identified, then a conflict indication is
returned.

• PickBranchingVariable consists of selecting a variable to assign and
the respective value.

• ConflictAnalysis consists of analyzing the most recent conflict and
learning a new clause from the conflict. The organization of this proce-
dure is described in section 4.4.

• Backtrack backtracks to the decision level computed by Conflict-
Analysis.

• AllVariablesAssigned tests whether all variables have been assigned,
in which case the algorithm terminates indicating that the CNF formula
is satisfiable. An alternative criterion to stop execution of the algorithm is
to check whether all clauses are satisfied. However, in modern SAT solvers
that use lazy data structures, clause state cannot be maintained accurately,
and so the termination criterion must be whether all variables are assigned.

Arguments to the auxiliary functions are assumed to be passed by reference.
Hence, ω and ν are supposed to be modified during execution of the auxiliary
functions.

The typical CDCL algorithm shown does not account for a few often used
techniques, namely search restarts [GSK98, BMS00] and implementation of clause
deletion policies [GN02]. Search restarts cause the algorithm to restart itself, but
already learnt clauses are kept. Clause deletion policies are used to decide learnt
clauses that can be deleted. Clause deletion allows the memory usage of the SAT

ConflictAnalysis analyzes the most recent conflict, learns a new
clause from the conflict, and returns a backtracking level.

Backtrack backtracks to the decision level computed by
ConflictAnalysis.

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 20 / 21

Summary

Conflict-Driven Clause Learning

Modern CDCL SAT solvers involves a number of additional issues:
▶ Variable selection heuristics
▶ Lazy data structures
▶ Periodic restart of backtrack search
▶ Deletion policies for learnt clauses
▶ . . .

Slides are based on the following references:
▶ Decision Procedures. Springer
▶ Handbook of Satisfiability. IOS Press
▶ http://www.cs.utexas.edu/~isil/cs389L/lecture3-6up.pdf

Hakjoo Oh AAA528 2025 Spring, Lecture 2 March 19, 2025 21 / 21

http://www.cs.utexas.edu/~isil/cs389L/lecture3-6up.pdf

