AAAb528: Computational Logic

Lecture 10 — Invariant Generation (Static Analysis)

Hakjoo Oh
2025 Spring

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 1/22

Program Verification vs. Program Analysis

Essentially the same things with different trade-offs:
@ Program verification

» Pros: powerful to prove properties
» Cons: hardly automated

@ Program analysis

» Pros: fully automatic
» Cons: focus on rather weak properties

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 2/22

Contents

@ Symbolic analysis

> concrete, non-terminating
@ Interval analysis

» abstract, non-relational
@ Octagon analysis

» abstract, relational

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 3/22

Program Representation

Control-flow graph (C, —)
@ C: the set of program points in the program

@ (—) C C x C: the control-flow relation
» ¢ — ¢’ cis a predecessor of ¢’

@ Each control-flow edge ¢ — ¢’ is associated with a command,
denoted emd(c — ¢’):

cmd — v := e | assume ¢ | cmdy;ecmds

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 4/22

Weakest Precondition

Weakest precondition transformer

wp : FOL X stmts — FOL

computes the most general precondition of a given postcondition and
program statement:

o wp(F,assumec) <= c— F
o wp(F[v],v:=¢e) < Fle]
° Wp(Fa Sl; cees S’n) <~ Wp(Wp(F, Sn)9 Sl; cee) Sn—l)

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 5/22

Strongest Postcondition

Strongest postcondition transformer

sp : FOL X stmts — FOL
computes the most specific postcondition of a given precondition and
program statement:
o sp(F,assumec) <= cAF
o sp(F[v],v := e[v]) <= T’ v = e[v?] A F[v°]
o sp(F, S1;...35,) <= sp(sp(F, S1),S2;...;Sn)

Hakjoo Oh AAA528 2025 Spring, Lecture 10

June 4, 2025 6/22

Examples

sp(i > n,i:=1+ k)
= 3% i=i"+kAi">n
<~ i1—k>n

sp(¢ > n,assume k > 0; 1 := 1+ k)
<= sp(sp(¢ > n,assume k > 0),¢ : =7 + k)
= sp(i >nAk>0,i:=i+k)

—= 3% i=i"+ kA" >nAkE>0
—i—-k>nAk>0

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 7/22

Inductive Map
@ The goal of static analysis is to find a map
T:C— FOL

that stores inductive invariants for each program point and is implied
by the precondition:

Fpre — T(Co).

o If the result T'(ceqit) implies the postcondition
T(Cezit) - Fpost

the function obeys the specification.

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 8/22

Forward Symbolic Analysis Procedure

@ Sets of reachable states are represented by formulas.

@ Strongest postcondition (sp) executes statements over formulas.

W .= {Co}
T(co) := Fpre
T(c):= 1L force C\ {co}
while W #£
¢ := Choose(W)
W =W\ {c}
foreach ¢’ € succ(c)
F :=sp(T(c),cmd(c — ¢’))
if F =t T(c)
T():=T(d)VF
W :=wu{c}
done
done

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025

9/22

Issues
@ The implication checking
F =5 T(d)

is undecidable in general. The underlying logic must be restricted to a
decidable theory or fragment.

@ Nontermination of loops.

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 10/22

Example

Qcop:2=0An > 0;
while @Cl
(t<n){
t:=1+ 1;
}
Qcy:1=n
Initial map:
T(cp) < 1 =0ANn>0
T(cn) < 1

Following basic path ¢ — c¢3:

T(co) < i=0An>0
T(c1) <= T(c1))Vi=0An>0 < i=0An>0

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 11/22

Example

Following basic path ¢; — ¢3:

@ Symbolic execution:

sp(T'(c1),assume i < n3¢:=14+ 1)
<= sp(i=0Amn > 0,assume ¢ < n3é:=1¢+ 1)
<= sp(i<nAi=0An>0,i:=¢+1)
«— 3% i=i"+1A<nAi®=0AnR>0
< i1=1An>1

@ Checking the implication:
ti=1An>1 == i=0An>0
© Join the result:
T(c1)) <= ((=0An>0V(i=1An>1)

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 12/22

Example

At the end of the next iteration:

T(c1)) <= (=0An2>20)V(E=1An>21)V(E=2An2>2)
and at the end of kth iteration:

T(c1) < (t=0An>0)V(E=1An>1)V---V(i =kAn > k)
This process does not terminate because

(t=kAn2>k) =5 ({t=0An>0)V---V(i=k—1An >k—1)

for any k. However,
0<t1<n

is an obvious inductive invariant that proves the postcondition:
0<i<nAt>n — i=n.

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 13 /22

Addressing the Issues

@ Unsound approach, e.g., unrolling loops for a fixed number
» incapable of verifying properties but still useful for bug-finding
@ Sound approach ensures correctness but cannot be complete.

@ Abstract interpretation is a general method for obtaining sound and
computable static analysis.
> abstract domain
» abstract semantics
» widening and narrowing

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 14 /22

1. Choose an Abstract Domain

The abstract domain D is a restricted subset of formulas; each member
d € D represents a set of program states: e.g.,

@ In the interval abstract domain Dy, a domain element d € Dy is a
conjunction of constraints of the forms
c<zx and z<ec¢

@ In the octagon abstract domain Do, a domain element d € Dy is a
conjunction of constraints of the forms

T, +x<c

@ In the Karr's abstract domain Dk, a domain element d € Dk is a
conjunction of constraints of the forms

co+c1xy +---cpxry, =0

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 15/22

2. Construct an Abstraction Function

The abstraction function:
ap : FOL — D
such that F = ap(F'). For example, the assertion
F::=0An>0
can be represented in the interval abstract domain by
ap,(F):0<iNi<0A0<n
and in Karr's abstract domain by

aDK(F):i=0

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 16 /22

3. Define an Abstract Strongest Postcondition

Define an abstract strongest postcondition operator spp,, also known as
abstract semantics or transfer function:

spp : D X stmts — D
such that sp, over-approximates sp:

sp(F,S) = spp(F,S).

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 17 /22

3. Define an Abstract Strongest Postcondition

For example, the strongest postcondition for assume:
sp(F,assume ¢) <= cAF
is abstracted by
sp(F,assume ¢) <= ap(c)MNp F
where abstract conjunction Mp : D X D — D is such that
i, NFy, — F;MNp Fs.

When the domain D consists of conjunctions of constraints of some form,
Mp is exact and equals to the usual conjunction A:

Fy AN Fy < F,Np Fs.

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 18 /22

4. Define Abstract Disjunction and Implication Checking
@ Define abstract disjunction Lip : D X D — D such that
Fy,vVF, — FUp F>

Usually abstract disjunction is not exact.

@ With a proper abstract domain, the implication checking

F =5 T(ck)

can be performed by a custom solver without querying a full SMT
solver.

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 19/22

5. Define Widening

A widening operator S/ p is a binary operator

Vvp:DXxD— D

such that
PV F — F,<yp F>

and the following property holds. For all increasing sequence
Fy,F, Fs,... (i.ie. F; => F;1; forall 3), the sequence G; defined by

G — 3 ifi =1
vt G, 1~vpF; ifi>1

eventually converges:

for some k and for all 2 > k,G; < Git1.

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 20/22

Abstract Interpretation Algorithm

W := {co}
T(co) := ap(Fpre)
T(c):= L force C\ {co}
while W # 0
c := Choose(W)
W := W\ {c}
foreach ¢’ € succ(c)
F :=sp(T(c),cmd(c — ¢’))
if F =5 T(d)
if widening is needed
T(¢) i=T(¢) ¥ (T(¢') Up F)
else
T():=T()up F
W :=wu{c}
done
done

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 21/22

Program Analysis

Automated techniques for computing program invariants:
@ Generic symbolic analysis procedure

@ Abstraction examples: Interval and octagon analyses

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 22/22

