
AAA528: Computational Logic

Lecture 10 — Invariant Generation (Static Analysis)

Hakjoo Oh
2025 Spring

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 1 / 22

Program Verification vs. Program Analysis

Essentially the same things with different trade-offs:

Program verification
▶ Pros: powerful to prove properties
▶ Cons: hardly automated

Program analysis
▶ Pros: fully automatic
▶ Cons: focus on rather weak properties

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 2 / 22

Contents

Symbolic analysis
▶ concrete, non-terminating

Interval analysis
▶ abstract, non-relational

Octagon analysis
▶ abstract, relational

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 3 / 22

Program Representation

Control-flow graph (C,→)

C: the set of program points in the program

(→) ⊆ C × C: the control-flow relation
▶ c → c′: c is a predecessor of c′

Each control-flow edge c → c′ is associated with a command,
denoted cmd(c → c′):

cmd → v := e | assume c | cmd1; cmd2

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 4 / 22

Weakest Precondition

Weakest precondition transformer

wp : FOL × stmts → FOL

computes the most general precondition of a given postcondition and
program statement:

wp(F, assume c) ⇐⇒ c → F

wp(F [v], v := e) ⇐⇒ F [e]

wp(F, S1; . . . ;Sn) ⇐⇒ wp(wp(F, Sn), S1; . . . ;Sn−1)

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 5 / 22

Strongest Postcondition

Strongest postcondition transformer

sp : FOL × stmts → FOL

computes the most specific postcondition of a given precondition and
program statement:

sp(F, assume c) ⇐⇒ c ∧ F

sp(F [v], v := e[v]) ⇐⇒ ∃v0. v = e[v0] ∧ F [v0]

sp(F, S1; . . . ;Sn) ⇐⇒ sp(sp(F, S1), S2; . . . ;Sn)

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 6 / 22

Examples

sp(i ≥ n, i := i + k)

⇐⇒ ∃i0. i = i0 + k ∧ i0 ≥ n

⇐⇒ i − k ≥ n

sp(i ≥ n, assume k ≥ 0; i := i + k)

⇐⇒ sp(sp(i ≥ n, assume k ≥ 0), i := i + k)

⇐⇒ sp(i ≥ n ∧ k ≥ 0, i := i + k)

⇐⇒ ∃i0. i = i0 + k ∧ i0 ≥ n ∧ k ≥ 0

⇐⇒ i − k ≥ n ∧ k ≥ 0

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 7 / 22

Inductive Map

The goal of static analysis is to find a map

T : C → FOL

that stores inductive invariants for each program point and is implied
by the precondition:

Fpre =⇒ T (c0).

If the result T (cexit) implies the postcondition

T (cexit) =⇒ Fpost

the function obeys the specification.

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 8 / 22

Forward Symbolic Analysis Procedure

Sets of reachable states are represented by formulas.

Strongest postcondition (sp) executes statements over formulas.

W := {c0}
T (c0) := Fpre

T (c) := ⊥ for c ∈ C \ {c0}
while W ̸= ∅

c := Choose(W)
W := W \ {c}
foreach c′ ∈ succ(c)

F := sp(T (c), cmd(c → c′))
if F ≠⇒ T (c′)

T (c′) := T (c′) ∨ F
W := W ∪ {c′}

done
done

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 9 / 22

Issues

The implication checking

F ≠⇒ T (c′)

is undecidable in general. The underlying logic must be restricted to a
decidable theory or fragment.

Nontermination of loops.

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 10 / 22

Example

@c0 : i = 0 ∧ n ≥ 0;
while @c1
(i < n) {

i := i + 1;
}
@c2 : i = n

Initial map:

T (c0) ⇐⇒ i = 0 ∧ n ≥ 0

T (c1) ⇐⇒ ⊥

Following basic path c0 → c1:

T (c0) ⇐⇒ i = 0 ∧ n ≥ 0

T (c1) ⇐⇒ T (c1) ∨ i = 0 ∧ n ≥ 0 ⇐⇒ i = 0 ∧ n ≥ 0

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 11 / 22

Example

Following basic path c1 → c1:

1 Symbolic execution:

sp(T (c1), assume i < n; i := i + 1)

⇐⇒ sp(i = 0 ∧ n ≥ 0, assume i < n; i := i + 1)

⇐⇒ sp(i < n ∧ i = 0 ∧ n ≥ 0, i := i + 1)

⇐⇒ ∃i0. i = i0 + 1 ∧ i0 < n ∧ i0 = 0 ∧ n ≥ 0

⇐⇒ i = 1 ∧ n ≥ 1

2 Checking the implication:

i = 1 ∧ n ≥ 1 ≠⇒ i = 0 ∧ n ≥ 0

3 Join the result:

T (c1) ⇐⇒ (i = 0 ∧ n ≥ 0) ∨ (i = 1 ∧ n ≥ 1)

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 12 / 22

Example

At the end of the next iteration:

T (c1) ⇐⇒ (i = 0 ∧ n ≥ 0) ∨ (i = 1 ∧ n ≥ 1) ∨ (i = 2 ∧ n ≥ 2)

and at the end of kth iteration:

T (c1) ⇐⇒ (i = 0∧n ≥ 0)∨(i = 1∧n ≥ 1)∨· · ·∨(i = k∧n ≥ k)

This process does not terminate because

(i = k∧n ≥ k) ≠⇒ (i = 0∧n ≥ 0)∨· · ·∨(i = k−1∧n ≥ k−1)

for any k. However,
0 ≤ i ≤ n

is an obvious inductive invariant that proves the postcondition:

0 ≤ i ≤ n ∧ i ≥ n =⇒ i = n.

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 13 / 22

Addressing the Issues

Unsound approach, e.g., unrolling loops for a fixed number
▶ incapable of verifying properties but still useful for bug-finding

Sound approach ensures correctness but cannot be complete.

Abstract interpretation is a general method for obtaining sound and
computable static analysis.

▶ abstract domain
▶ abstract semantics
▶ widening and narrowing

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 14 / 22

1. Choose an Abstract Domain

The abstract domain D is a restricted subset of formulas; each member
d ∈ D represents a set of program states: e.g.,

In the interval abstract domain DI , a domain element d ∈ DI is a
conjunction of constraints of the forms

c ≤ x and x ≤ c

In the octagon abstract domain DO, a domain element d ∈ DI is a
conjunction of constraints of the forms

±x1 ± x2 ≤ c

In the Karr’s abstract domain DK , a domain element d ∈ DK is a
conjunction of constraints of the forms

c0 + c1x1 + · · · cnxn = 0

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 15 / 22

2. Construct an Abstraction Function

The abstraction function:

αD : FOL → D

such that F =⇒ αD(F). For example, the assertion

F : i = 0 ∧ n ≥ 0

can be represented in the interval abstract domain by

αDI(F) : 0 ≤ i ∧ i ≤ 0 ∧ 0 ≤ n

and in Karr’s abstract domain by

αDK(F) : i = 0

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 16 / 22

3. Define an Abstract Strongest Postcondition

Define an abstract strongest postcondition operator ŝpD, also known as
abstract semantics or transfer function:

ŝpD : D × stmts → D

such that ŝpD over-approximates sp:

sp(F, S) =⇒ ŝpD(F, S).

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 17 / 22

3. Define an Abstract Strongest Postcondition

For example, the strongest postcondition for assume:

sp(F, assume c) ⇐⇒ c ∧ F

is abstracted by

ŝp(F, assume c) ⇐⇒ αD(c) ⊓D F

where abstract conjunction ⊓D : D × D → D is such that

F1 ∧ F2 =⇒ F1 ⊓D F2.

When the domain D consists of conjunctions of constraints of some form,
⊓D is exact and equals to the usual conjunction ∧:

F1 ∧ F2 ⇐⇒ F1 ⊓D F2.

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 18 / 22

4. Define Abstract Disjunction and Implication Checking

Define abstract disjunction ⊔D : D × D → D such that

F1 ∨ F2 =⇒ F1 ⊔D F2

Usually abstract disjunction is not exact.

With a proper abstract domain, the implication checking

F ≠⇒ T (ck)

can be performed by a custom solver without querying a full SMT
solver.

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 19 / 22

5. Define Widening

A widening operator ▽D is a binary operator

▽D : D × D → D

such that
F1 ∨ F2 =⇒ F1 ▽D F2

and the following property holds. For all increasing sequence
F1, F2, F3, . . . (i.e. Fi =⇒ Fi+1 for all i), the sequence Gi defined by

Gi =

{
F1 if i = 1
Gi−1 ▽D Fi if i > 1

eventually converges:

for some k and for all i ≥ k,Gi ⇐⇒ Gi+1.

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 20 / 22

Abstract Interpretation Algorithm

W := {c0}
T (c0) := αD(Fpre)
T (c) := ⊥ for c ∈ C \ {c0}
while W ̸= ∅

c := Choose(W)
W := W \ {c}
foreach c′ ∈ succ(c)

F := ŝp(T (c), cmd(c → c′))
if F ≠⇒ T (c′)

if widening is needed
T (c′) := T (c′) ▽ (T (c′) ⊔D F)

else
T (c′) := T (c′) ⊔D F

W := W ∪ {c′}
done

done
Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 21 / 22

Program Analysis

Automated techniques for computing program invariants:

Generic symbolic analysis procedure

Abstraction examples: Interval and octagon analyses

Hakjoo Oh AAA528 2025 Spring, Lecture 10 June 4, 2025 22 / 22

