AAA528: Computational Logic Lecture 0 — Course Overview

Hakjoo Oh 2025 Spring

Basic Information

Instructor: Hakjoo Oh

- Position: Professor in CS, Korea University
- Expertise: Software Analysis, Programming Languages
- Office: 616c, Science Library
- Email: hakjoo_oh@korea.ac.kr
- Office Hours: by appointment

About This Course

- Computational logic
 - Logic for reasoning about program behavior
 - Why study logic?
 - ★ Logic is the mathematical basis of software
 - ★ Just as calculus is the basis of science and engineering
 - $\star\,$ Used for designing, implementing, and verifying software
- Program verification
 - Techniques for proving that programs meet their specifications

Topics

Computational logic and its application to program verification.

- Propositional logic
- First-order logic
- First-order theories
- Program verification

Course Materials

- Aaron R. Bradley and Zohar Manna. The Calculus of Computation. Springer
- Daniel Kroening and Ofer Strichman. Decision Procedures. Springer

- Materials from related courses:
 - Computer-Aided Reasoning for Software. Univ. of Washington https://courses.cs.washington.edu/courses/cse507/17wi/
 - Automated Logical Reasoning. Univ. of Texas at Austin http://www.cs.utexas.edu/~isil/cs389L/

Schedule (tentative)

8 lectures + 5 hands-on sessions + 2 exams

Weeks	Topics
Week 1	Introduction
Week 2	Propositional Logic
Week 3	First-order Logic
Week 4	First-order Logic
Week 5	First-order Theories
Week 6	SMT Solvers
Week 7	Mid-term exam
Week 8	Program Verification
Week 9	Program Verification
Week 10	Program Verification
Week 11	Invariant Generation
Week 12	Invariant Generation
Week 13	Temporal Logic
Week 14	Temporal Logic
Week 15	Final exam

Grading (tentative)

- Quiz (hands-on sessions) 40%
 - Implementing a SAT solver
 - Z3 tutorial
 - SAT/SMT application 1 (boolean function synthesis)
 - SAT/SMT application 2 (bounded model checking)
 - Program verification
- Mid-term exam 20%
- Final exam 20%
- Attendance 10%
 - Attendance is mandatory for every class. Unapproved absences may result in an F.

TODO

Install Z3 on your machine.

- https://github.com/Z3Prover/z3
- A tutorial in Python:

https://ericpony.github.io/z3py-tutorial/guide-examples.htm