CS389L: Automated Logical Reasoning Lecture 16: Decision Procedures for Combination Theories Ișıl Dillig	Motivation - So far, learned about decision procedures for useful theories - Examples: Theory of equality with uninterpreted functions, theory of rationals, theory of integers - But in many cases, we need to decide satisfiability of formulas involving multiple theories - Example: $1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$ - This formula does not belong to any individual theory - But it does belong, for instance, to combination of $T_{=}$and $T_{\mathbb{Z}}$
Lrions	Crione
Overview - Recall: Given two theories T_{1} and T_{2} that have the $=$ predicate, we define a combined theory $T_{1} \cup T_{2}$ - Signature of $T_{1} \cup T_{2}: \Sigma_{1} \cup \Sigma_{2}$ - Axioms of $T_{1} \cup T_{2}: A_{1} \cup A_{2}$ - Given decision procedures for quantifier-free T_{1} and T_{2}, we want a decision procedure to decide satisfiability of formulas in qff $T_{1} \cup T_{2}$	Nelson-Oppen Overview - Also allows combining arbitrary number of theories - For instance, to combine T_{1}, T_{2}, T_{3}, first combine T_{1}, T_{2} - Then, combine $T_{1} \cup T_{2}$ and T_{3} again using Nelson-Oppen
	Slimeme
Restrictions of Nelson-Oppen - Nelson-Oppen method imposes the following restrictions: 1. Only allows combining quantifier-free fragments 2. Only allows combining formulas without disjunctions, but not a major limitation because can convert to DNF 3. Signatures can only share equality: $\Sigma_{1} \cap \Sigma_{2}=\{=\}$ 4. Theories T_{1} and T_{2} must be stably infinite - Theory T is stably infinite iff every satisfiable qff formula is satisfiable in a universe of discourse with infinite cardinality	Example of Non-Stably Infinite Theory Signature: $\{a, b,=\}$ Axiom: $\quad \forall x . x=a \vee x=b$ - Axiom says that any object in the universe of discourse must be equal to either a or b - Now consider U containing more than 2 distinct elements - Then, there is at least one element that is not equal to a or b - Thus, any U with more than 2 elements violates axiom - Hence, theory only has finite models, and is not stably infinite
Fritilis	

Examples of Stably Infinite Theories

- Fortunately, almost any theory of interest is stably infinite
- All theories we discussed, $T_{=}, T_{\mathbb{Q}}, T_{\mathbb{Z}}, T_{A}$, are stably infinite
- Which of these theories can we combine using Nelson-Oppen?

1. $T_{=}$and $T_{\mathbb{Q}}$?
2. $T_{=}$and $T_{\mathbb{Z}}$?
3. T_{A} and $T_{\mathbb{Z}}$?
4. $T_{\mathbb{Q}}$ and $T_{\mathbb{Z}}$?

CS389L: Automated Logical Ressoning Lecture 16: Decision Procedures for Combination Theories

Purification Overview

- Given formula F in $T_{1} \cup T_{2}$, goal of purification is to separate F into formulas F_{1} and F_{2} such that:

1. F_{1} belongs only to T_{1} (is "pure")
2. F_{2} belong only to T_{2} (is "pure")
3. $F_{1} \wedge F_{2}$ is equisatisfiable as F

- Resulting formula after purification is not equivalent, but this is good enough

Purification Example 1

- Consider $T_{=} \cup T_{\mathbb{Q}}$ formula $x \leq f(x)+1$
- Is this formula already pure?
- Since $f(x)$ is not in $T_{\mathbb{Q}}$, replace with new variable y and add equality constraint $y=f(x)$
- Thus, formula after purification:

$$
\underbrace{x \leq y+1}_{T_{\mathbb{Q}}} \wedge \underbrace{y=f(x)}_{T_{=}}
$$

Nelson-Oppen Overview

- Nelson-Oppen method has conceptually two-different phases:

1. Purification: Seperate formula F in $T_{1} \cup T_{2}$ into two formulas F_{1} in T_{1} and F_{2} in T_{2}
2. Equality propagation: Propagate all relevant equalities between theories

- Purification step is always the same for any arbitrary theory
- But equality propagation is different between convex and non-convex theories

CS389L: Automated Logical Ressoning Lecture 16: Decision Procedures for Combination Theories

How To Purify

- To purify formula F, exhaustively apply the following:

1. Consider term $f\left(\ldots, t_{i}, \ldots\right)$. If $f \in \Sigma_{i}$ but t_{i} is not a term in T_{i}, replace t_{i} with fresh variable z and conjoin $z=t_{i}$
2. Consider predicate $p\left(\ldots, t_{i}, \ldots\right)$. If $p \in \Sigma_{i}$ but t_{i} is not a term in T_{i}, replace t_{i} with fresh variable w and conjoin $w=t_{i}$

- After this procedure, we can write F as $F_{1} \wedge F_{2}$, where each F_{i} is pure

Purification Example II

- Consider following $\Sigma_{=} \cup \Sigma_{\mathbb{Z}}$ formula:

$$
f(x+g(y)) \leq g(a)+f(b)
$$

- Easiest to purify "inside out"
- Is the term $x+g(y)$ pure?
- How do we purify it?
- Resulting formula:

$$
f\left(x+z_{1}\right) \leq g(a)+f(b) \wedge z_{1}=g(y)
$$

Purification Example II, cont
$\qquad f\left(x+z_{1}\right) \leq g(a)+f(b) \wedge z_{1}=g(y)$
- Is $f\left(x+z_{1}\right)$ pure?
- How do we purify?
- Resulting formula:
$\quad f\left(z_{2}\right) \leq g(a)+f(b) \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1}$
- Is formula purified now? no

Purification Example II, cont

$$
f\left(z_{2}\right) \leq z_{3}+z_{4} \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1} \wedge z_{3}=g(a) \wedge z_{4}=f(b)
$$

- How do we purify?
- Resulting formula:

$$
\begin{gathered}
z_{5} \leq z_{3}+z_{4} \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1} \wedge \\
z_{3}=g(a) \wedge z_{4}=f(b) \wedge z_{5}=f\left(z_{2}\right)
\end{gathered}
$$

Is formula purified now?

Two Phases of Nelson-Oppen

- Recall: Nelson-Oppen method has two different phases:

1. Purification: Seperate formula F in $T_{1} \cup T_{2}$ into two formulas F_{1} in T_{1} and F_{2} in T_{2}
2. Equality propagation: Propagate all relevant equalities between theories

- Talk about second phase next
- But this phase is different for convex vs. non-convex theories

Purification Example II, cont

$$
f\left(z_{2}\right) \leq g(a)+f(b) \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1}
$$

- How do we purify?
- Resulting formula:

$$
f\left(z_{2}\right) \leq z_{3}+z_{4} \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1} \wedge z_{3}=g(a) \wedge z_{4}=f(b)
$$

- Is formula purified now?

Isl Dililig
CS389L: Automated Logical Ressoning Lecture 16: Decision Procedures for Combination Theories
14/39

Shared vs. Unshared Variables

- After purification, we have decomposed a formula F into two pure formulas F_{1} and F_{2}
- If x occurs in both F_{1} and F_{2}, x is called shared variable
- If y occurs only in F_{1} or only in F_{2}, it is called unshared variable
- Consider the following purified formula:

$$
\underbrace{w_{1}=x+y \wedge y=1 \wedge w_{2}=2}_{T_{\mathbb{Z}}} \wedge \underbrace{w_{1}=f(x) \wedge f(x) \neq f\left(w_{2}\right)}_{T_{=}}
$$

- Which variables are shared? w_{1}, x, w_{2}
- Which variables are unshared? y

CS389: Automated Logical Reasoning Leecture 16: Decision Procedures for Combination Theries

Convex Theories

- Theory T is called convex if for every conjunctive formula F :
- If $F \Rightarrow \bigvee_{i=1}^{n} x_{i}=y_{i}$ for finite n
- Then, $F \Rightarrow x_{i}=y_{i}$ for some $i \in[1, n]$
- Thus, in convex theory, if F implies disjunction of equalities, F also implies at least one of these equalities on its own
- If a theory does not satisfy this condition, it is called non-convex

```
Examples of Convex and Non-Convex Theories
- Example: Consider formula \(1 \leq x \wedge x \leq 2\) in \(T_{\mathbb{Z}}\)
- Does it imply \(x=1 \vee x=2\) ?
- Does it imply \(x=1\) ?
- Does it imply \(x=2\) ?
- Is \(T_{\mathbb{Z}}\) convex?
- However, theory of rationals \(T_{\mathbb{Q}}\) is convex
- Theory of equality \(T_{=}\)is also convex
- Combining decision procedures for two convex theories is easier and more efficient
|sql Dilisg. CS389: Automated Logical Ressoning Leecture 16: Decision Procedures for Combination Theories
```


Nelson-Oppen Method for Convex Theories

- If both are SAT, this does not mean F is sat
- Example:

$$
\underbrace{x+y=2 \wedge x=1}_{T_{\mathbb{Z}}} \wedge \underbrace{f(x) \neq f(y)}_{T_{=}}
$$

- Here, F_{1} and F_{2} are individually sat, but their combination is unsat $\mathrm{b} / \mathrm{c} T_{\mathbb{Z}}$ implies $x=y$
- In the case where F_{1} and F_{2} are sat, theories have to exchange all implied equalities
-Why only equalities?

Example

- Use Nelson-Oppen to decide sat of following $T_{=} \cup T_{\mathbb{Q}}$ formula:
$f(f(x)-f(y)) \neq f(z) \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z$
- First, we need to purify:
- Replace $f(x)$ with new variable w_{1}
- Replace $f(y)$ with new variable w_{2}
- $f(x)-f(y)$ is now replaced with $w_{1}-w_{2}$ and we conjoin

$$
w_{1}=f(x) \wedge w_{2}=f(y)
$$

- First literal is now $f\left(w_{1}-w_{2}\right) \neq f(z)$; still not pure!
- Replace $w_{1}-w_{2}$ with w_{3} and add equality $w_{3}=w_{1}-w_{2}$

Nelson-Oppen Method for Convex Theories

- Given formula F in $T_{1} \cup T_{2}\left(T_{1}, T_{2}\right.$ convex), want to decide if F is satisfiable
- First, purify F into F_{1} and F_{2}
- Run decision procedures for T_{1}, T_{2} to decide sat. of F_{1}, F_{2}
- If either is unsat, F is unsatisfiable.

Cssil Dilig. \quad CS39L: Automated Logical Reasoning Lecture 16: Decision Procedures for Combination Theories
20/39

Nelson-Oppen Method for Convex Theories

- For each pair of shared variables x, y, determine if:

1. $F_{1} \Rightarrow x=y$
2. $F_{2} \Rightarrow x=y$

- If (1) holds but not (2), conjoin $x=y$ with F_{2}
- If (2) holds but not (1), conjoin $x=y$ with F_{1}
- Let F_{1}^{\prime} and F_{2}^{\prime} denote new formulas
- Check satisfiability of F_{1}^{\prime} and F_{2}^{\prime}
- Repeat until either formula becomes unsat or no new equalities can be inferred

Isil Dilif,
CS389L: Automated Logical Resosoning Lecture 16: Decision Procedures for Combination Theories

Example, cont

- Purified formula is $F_{1} \wedge F_{2}$ where:

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Which variables are shared?
- Check sat of F_{1}. Is it SAT?
- Check sat of F_{2}. Is it SAT?
- Now, for each pair of shared variable x_{i}, x_{j}, we query whether F_{1} or F_{2} imply $x_{i}=x_{j}$

Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Consider the query $x=y$ - is it implied by either F_{1} or F_{2} ?
- $y+z \leq x \wedge 0 \leq z$ imply $0 \leq z \leq x-y$, i.e., $y \leq x$
- Since we also have $x \leq y, T_{\mathbb{Q}}$ implies $x=y$
- Now, propagate this to $T_{=\text {, so }} F_{1}^{\prime}$ becomes:

$$
F_{1}^{\prime}: w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y
$$

- Check sat of F_{1}^{\prime}. Is it SAT? yes
- Are we done? no
|sㅚㅣ Diliig.

Example, cont

$F_{1}: \quad w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y$
$F_{2}: w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z \wedge w_{1}=w_{2}$

- Consider the query $w_{3}=z$?
- $w_{3}=w_{1}-w_{2}$ and $w_{1}=w_{2}$ imply $w_{3}=0$
- Since $x=y, y+z \leq x$ implies $z \leq 0$
- Since $z \leq 0$ and $0 \leq z$, we have $z=0$
- Thus, $T_{\mathbb{Q}}$ answer "yes" for query $w_{3}=z$

Non-Convex Theories

- Unfortunately, technique discussed so far does not work for non-convex theories
- Consider the following $T_{\mathbb{Z}} \cup T_{=}$formula:

$$
1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

- Is this formula SAT? no
- Let's see what happens if we use technique described so far
- If we purify, we get the following formulas:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

Example, cont
$F_{1}: \quad w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y$
$F_{2}: \quad w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z$

- Since F_{1} changed, need to check if it implies any new equality
- Does it imply a new equality? yes, $w_{1}=w_{2}$
- Now, we add $w_{1}=w_{2}$ to F_{2} :

$$
F_{2}: w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z \wedge w_{1}=w_{2}
$$

- We recheck sat of F_{2}. Is it SAT? yes
- Still not done b / c need to check if F_{2} implies any new equalities

CS389L: Automated Logical Ressoning Lecture 16: Decision Procedures for Combination Theories

Example, cont

- Now, propagate $w_{3}=z$ to F_{1} :
$F_{1}: w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \wedge w_{3}=z$
- Is this sat?
- No, because $w_{3}=z$ implies $f\left(w_{3}\right)=f(z)$
- This contradicts $f\left(w_{3}\right) \neq f(z)$
- Thus, original formula is UNSAT
CS389: Automated Logical Reasoning Leeture 16: Decision Procediures for Combination Theories $\quad 28.39$

Example, cont
$F_{1}: \quad f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right)$
$F_{2}: \quad 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2$

- Is F_{1} SAT? yes
- Is F_{2} SAT? yes
- Does F_{1} imply new equalities? no
- Does F_{2} imply new equalities? no
- Thus technique discussed so far returns sat, although formula in unsat

\|sal Dilig.	5399: Automated Logical Reasoning Lecture 16: Decision Procedures for Combination Theries	29/39

Nelson-Oppen with Non-Convex Theories
- Problem is that in non-convex theories, a formula might imply
a disjunction of equalities, but not any individual equality
- We also have to query and propagate disjunctions of equalities
- But how do you propagate disjunctions, since we only allow
conjunctive formula?
- If answer to query $\bigvee_{i=1}^{n} x_{i}=y_{i}$ is yes, create n subproblems
where we propagate $x_{i}=y_{i}$ in i 'th subproblem
- If there is any subproblem that is satisfiable, original formula
is satisfiable
- If every subproblem is unsatisfiable, then original formula is
unsatisfiable

Example, cont

- Now, we create two subproblems, one where we propagate $x=w_{1}$ and $x=w_{2}$
- First subproblem:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \wedge x=w_{1} \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Is this satisfiable?
-

Example II

- Consider the following $T_{=} \cup T_{\mathbb{Z}}$ formula:

$$
1 \leq x \wedge x \leq 3 \wedge f(x) \neq f(1) \wedge f(x) \neq f(3) \wedge f(1) \neq f(2)
$$

- Formulas after purification:

$$
\begin{array}{cc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- Consider the query $x=w_{1} \vee x=w_{2} \vee x=w_{3}$
- Does either formula imply this query?

Example

- Consider $T_{=} \cup T_{\mathbb{Z}}$ formula:

$$
1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

- After purification, we get:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Does F_{2} imply any disjunction of equalities?
|sf| Dillig. CS389L: Automated Logical Ressoning Leecture 16: Decision Procedures for Combination Theories 32

Example, cont

- Second subproblem:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Is this satisfiable?
- Since neither subproblem is satisfiable, Nelson-Oppen returns unsat for original formula

Example II, cont

- First subproblem:
$F_{1}: \quad f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{1}$
$F_{2}: \quad 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3$
- Is this satisfiable?
- Second subproblem:
$F_{1}: \quad f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{2}$
$F_{2}: 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3$
- Is this satisfiable?

'Ssll Diligs.	CS39L: Automated Logical Reasoning Lecture 16: Decision Procedures for Combination Theories	$35 / 39$

Example II, cont

Second subproblem:

$F_{1}: \quad f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{2}$
$F_{2}: 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3$

- So it's satisfiable, are we done?
- Are there any new implied equalities or disjunctions of equalities?
- Thus, second subproblem is satisfiable
- Do we need to check third subproblem? No
- Thus, original formula is satisfiable

Nelson-Oppen for Convex vs. Non-Convex Theories

- Nelson-Oppen method is much more efficient for convex theories than for non-convex theories
- In convex theories:

1. need to issue one query for each pair of shared variables
2. If decision procedures for T_{1} and T_{2} have polynomial time complexity, combination using Nelson-Oppen also has polynomial complexity

- In non-convex theories:

1. need to consider disjunctions of equalities between each pair of shared variables
2. If decision procedures for T_{1} and T_{2} have $N P$ time complexity, combination using Nelson-Oppen also has $N P$ time complexity

Summary

- Nelson-Oppen method gives a sound and complete decision procedure for combination theories
- However, it only works for quantifier-free theories that are infinitely stable
- Not a severe restriction because most theories of interest are infinitely stable
- Next lecture: How to decide satisfiability in first-order theories without converting to DNF

