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Motivation

I So far, learned about decision procedures for useful theories

I Examples: Theory of equality with uninterpreted functions,
theory of rationals, theory of integers

I But in many cases, we need to decide satisfiability of formulas
involving multiple theories

I Example: 1 ≤ x ∧ x ≤ 2 ∧ f (x ) 6= f (1) ∧ f (x ) 6= f (2)

I This formula does not belong to any individual theory

I But it does belong, for instance, to combination of T= and TZ

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 16: Decision Procedures for Combination Theories 2/39

Overview

I Recall: Given two theories T1 and T2 that have the =
predicate, we define a combined theory T1 ∪ T2

I Signature of T1 ∪ T2: Σ1 ∪ Σ2

I Axioms of T1 ∪ T2: A1 ∪A2

I Given decision procedures for quantifier-free T1 and T2, we
want a decision procedure to decide satisfiability of formulas
in qff T1 ∪ T2
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Nelson-Oppen Overview

I Also allows combining arbitrary number of theories

I For instance, to combine T1,T2,T3, first combine T1, T2

I Then, combine T1 ∪ T2 and T3 again using Nelson-Oppen
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Restrictions of Nelson-Oppen

I Nelson-Oppen method imposes the following restrictions:

1. Only allows combining quantifier-free fragments

2. Only allows combining formulas without disjunctions, but not a
major limitation because can convert to DNF

3. Signatures can only share equality: Σ1 ∩ Σ2 = {=}

4. Theories T1 and T2 must be stably infinite

I Theory T is stably infinite iff every satisfiable qff formula is
satisfiable in a universe of discourse with infinite cardinality
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Example of Non-Stably Infinite Theory

Signature : {a, b,=}
Axiom : ∀x . x = a ∨ x = b

I Axiom says that any object in the universe of discourse must
be equal to either a or b

I Now consider U containing more than 2 distinct elements

I Then, there is at least one element that is not equal to a or b

I Thus, any U with more than 2 elements violates axiom

I Hence, theory only has finite models, and is not stably infinite
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Examples of Stably Infinite Theories

I Fortunately, almost any theory of interest is stably infinite

I All theories we discussed, T=, TQ, TZ, TA, are stably infinite

I Which of these theories can we combine using Nelson-Oppen?

1. T= and TQ?

2. T= and TZ?

3. TA and TZ?

4. TQ and TZ?
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Nelson-Oppen Overview

I Nelson-Oppen method has conceptually two-different phases:

1. Purification: Seperate formula F in T1 ∪ T2 into two formulas
F1 in T1 and F2 in T2

2. Equality propagation: Propagate all relevant equalities between
theories

I Purification step is always the same for any arbitrary theory

I But equality propagation is different between convex and
non-convex theories
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Purification Overview

I Given formula F in T1 ∪T2, goal of purification is to separate
F into formulas F1 and F2 such that:

1. F1 belongs only to T1 (is ”pure”)

2. F2 belong only to T2 (is ”pure”)

3. F1 ∧ F2 is equisatisfiable as F

I Resulting formula after purification is not equivalent, but this
is good enough
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How To Purify

I To purify formula F , exhaustively apply the following:

1. Consider term f (. . . , ti , . . .). If f ∈ Σi but ti is not a term in
Ti , replace ti with fresh variable z and conjoin z = ti

2. Consider predicate p(. . . , ti , . . .). If p ∈ Σi but ti is not a term
in Ti , replace ti with fresh variable w and conjoin w = ti

I After this procedure, we can write F as F1 ∧ F2, where each
Fi is pure
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Purification Example 1

I Consider T= ∪ TQ formula x ≤ f (x ) + 1

I Is this formula already pure?

I Since f (x ) is not in TQ, replace with new variable y and add
equality constraint y = f (x )

I Thus, formula after purification:

x ≤ y + 1︸ ︷︷ ︸
TQ

∧ y = f (x )︸ ︷︷ ︸
T=
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Purification Example II

I Consider following Σ= ∪ ΣZ formula:

f (x + g(y)) ≤ g(a) + f (b)

I Easiest to purify ”inside out”

I Is the term x + g(y) pure?

I How do we purify it?

I Resulting formula:

f (x + z1) ≤ g(a) + f (b) ∧ z1 = g(y)
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Purification Example II, cont

f (x + z1) ≤ g(a) + f (b) ∧ z1 = g(y)

I Is f (x + z1) pure?

I How do we purify?

I Resulting formula:

f (z2) ≤ g(a) + f (b) ∧ z1 = g(y) ∧ z2 = x + z1

I Is formula purified now? no
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Purification Example II, cont

f (z2) ≤ g(a) + f (b) ∧ z1 = g(y) ∧ z2 = x + z1

I How do we purify?

I Resulting formula:

f (z2) ≤ z3+z4∧z1 = g(y)∧z2 = x +z1∧z3 = g(a)∧z4 = f (b)

I Is formula purified now?
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Purification Example II, cont

f (z2) ≤ z3 + z4 ∧ z1 = g(y)∧ z2 = x + z1 ∧ z3 = g(a)∧ z4 = f (b)

I How do we purify?

I Resulting formula:

z5 ≤ z3 + z4 ∧ z1 = g(y) ∧ z2 = x + z1∧
z3 = g(a) ∧ z4 = f (b) ∧ z5 = f (z2)

I Is formula purified now?
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Shared vs. Unshared Variables

I After purification, we have decomposed a formula F into two
pure formulas F1 and F2

I If x occurs in both F1 and F2, x is called shared variable

I If y occurs only in F1 or only in F2, it is called unshared
variable

I Consider the following purified formula:

w1 = x + y ∧ y = 1 ∧ w2 = 2︸ ︷︷ ︸
TZ

∧ w1 = f (x ) ∧ f (x ) 6= f (w2)︸ ︷︷ ︸
T=

I Which variables are shared? w1, x ,w2

I Which variables are unshared? y
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Two Phases of Nelson-Oppen

I Recall: Nelson-Oppen method has two different phases:

1. Purification: Seperate formula F in T1 ∪ T2 into two formulas
F1 in T1 and F2 in T2

2. Equality propagation: Propagate all relevant equalities between
theories

I Talk about second phase next

I But this phase is different for convex vs. non-convex theories
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Convex Theories

I Theory T is called convex if for every conjunctive formula F :

I If F ⇒ ∨n
i=1 xi = yi for finite n

I Then, F ⇒ xi = yi for some i ∈ [1,n]

I Thus, in convex theory, if F implies disjunction of equalities,
F also implies at least one of these equalities on its own

I If a theory does not satisfy this condition, it is called
non-convex
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Examples of Convex and Non-Convex Theories

I Example: Consider formula 1 ≤ x ∧ x ≤ 2 in TZ

I Does it imply x = 1 ∨ x = 2?

I Does it imply x = 1?

I Does it imply x = 2?

I Is TZ convex?

I However, theory of rationals TQ is convex

I Theory of equality T= is also convex

I Combining decision procedures for two convex theories is
easier and more efficient
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Nelson-Oppen Method for Convex Theories

I Given formula F in T1 ∪ T2 (T1,T2 convex), want to decide
if F is satisfiable

I First, purify F into F1 and F2

I Run decision procedures for T1, T2 to decide sat. of F1, F2

I If either is unsat, F is unsatisfiable.
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Nelson-Oppen Method for Convex Theories

I If both are SAT, this does not mean F is sat

I Example:
x + y = 2 ∧ x = 1︸ ︷︷ ︸

TZ

∧ f (x ) 6= f (y)︸ ︷︷ ︸
T=

I Here, F1 and F2 are individually sat, but their combination is
unsat b/c TZ implies x = y

I In the case where F1 and F2 are sat, theories have to
exchange all implied equalities

I Why only equalities?
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Nelson-Oppen Method for Convex Theories

I For each pair of shared variables x , y , determine if:

1. F1 ⇒ x = y

2. F2 ⇒ x = y

I If (1) holds but not (2), conjoin x = y with F2

I If (2) holds but not (1), conjoin x = y with F1

I Let F ′
1 and F ′

2 denote new formulas

I Check satisfiability of F ′
1 and F ′

2

I Repeat until either formula becomes unsat or no new
equalities can be inferred
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Example

I Use Nelson-Oppen to decide sat of following T= ∪TQ formula:

f (f (x )− f (y)) 6= f (z ) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

I First, we need to purify:

I Replace f (x ) with new variable w1

I Replace f (y) with new variable w2

I f (x )− f (y) is now replaced with w1 − w2 and we conjoin

w1 = f (x ) ∧ w2 = f (y)

I First literal is now f (w1 − w2) 6= f (z ); still not pure!

I Replace w1 − w2 with w3 and add equality w3 = w1 − w2
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Example, cont

I Purified formula is F1 ∧ F2 where:

F1 : w1 = f (x ) ∧ w2 = f (y) ∧ f (w3) 6= f (z )
F2 : w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

I Which variables are shared?

I Check sat of F1. Is it SAT?

I Check sat of F2. Is it SAT?

I Now, for each pair of shared variable xi , xj , we query whether
F1 or F2 imply xi = xj
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Example, cont

F1 : w1 = f (x ) ∧ w2 = f (y) ∧ f (w3) 6= f (z )
F2 : w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

I Consider the query x = y – is it implied by either F1 or F2?

I y + z ≤ x ∧ 0 ≤ z imply 0 ≤ z ≤ x − y , i.e., y ≤ x

I Since we also have x ≤ y , TQ implies x = y

I Now, propagate this to T=, so F ′
1 becomes:

F ′
1 : w1 = f (x ) ∧ w2 = f (y) ∧ f (w3) 6= f (z ) ∧ x = y

I Check sat of F ′
1. Is it SAT? yes

I Are we done? no
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Example, cont

F1 : w1 = f (x ) ∧ w2 = f (y) ∧ f (w3) 6= f (z ) ∧ x = y
F2 : w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

I Since F1 changed, need to check if it implies any new equality

I Does it imply a new equality? yes, w1 = w2

I Now, we add w1 = w2 to F2:

F2 : w3 = w1−w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w1 = w2

I We recheck sat of F2. Is it SAT? yes

I Still not done b/c need to check if F2 implies any new
equalities
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Example, cont

F1 : w1 = f (x ) ∧ w2 = f (y) ∧ f (w3) 6= f (z ) ∧ x = y
F2 : w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w1 = w2

I Consider the query w3 = z?

I w3 = w1 − w2 and w1 = w2 imply w3 = 0

I Since x = y , y + z ≤ x implies z ≤ 0

I Since z ≤ 0 and 0 ≤ z , we have z = 0

I Thus, TQ answer ”yes” for query w3 = z
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Example, cont

I Now, propagate w3 = z to F1:

F1 : w1 = f (x )∧w2 = f (y)∧ f (w3) 6= f (z )∧ x = y ∧w3 = z

I Is this sat?

I No, because w3 = z implies f (w3) = f (z )

I This contradicts f (w3) 6= f (z )

I Thus, original formula is UNSAT
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Non-Convex Theories

I Unfortunately, technique discussed so far does not work for
non-convex theories

I Consider the following TZ ∪ T= formula:

1 ≤ x ∧ x ≤ 2 ∧ f (x ) 6= f (1) ∧ f (x ) 6= f (2)

I Is this formula SAT? no

I Let’s see what happens if we use technique described so far

I If we purify, we get the following formulas:

F1 : f (x ) 6= f (w1) ∧ f (x ) 6= f (w2)
F2 : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2
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Example, cont

F1 : f (x ) 6= f (w1) ∧ f (x ) 6= f (w2)
F2 : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2

I Is F1 SAT? yes

I Is F2 SAT? yes

I Does F1 imply new equalities? no

I Does F2 imply new equalities? no

I Thus technique discussed so far returns sat, although formula
in unsat
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Nelson-Oppen with Non-Convex Theories

I Problem is that in non-convex theories, a formula might imply
a disjunction of equalities, but not any individual equality

I We also have to query and propagate disjunctions of equalities

I But how do you propagate disjunctions, since we only allow
conjunctive formula?

I If answer to query
∨n

i=1 xi = yi is yes, create n subproblems
where we propagate xi = yi in i ’th subproblem

I If there is any subproblem that is satisfiable, original formula
is satisfiable

I If every subproblem is unsatisfiable, then original formula is
unsatisfiable

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 16: Decision Procedures for Combination Theories 31/39

Example

I Consider T= ∪ TZ formula:

1 ≤ x ∧ x ≤ 2 ∧ f (x ) 6= f (1) ∧ f (x ) 6= f (2)

I After purification, we get:

F1 : f (x ) 6= f (w1) ∧ f (x ) 6= f (w2)
F2 : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2

I Does F2 imply any disjunction of equalities?
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Example, cont

I Now, we create two subproblems, one where we propagate
x = w1 and x = w2

I First subproblem:

F1 : f (x ) 6= f (w1) ∧ f (x ) 6= f (w2) ∧ x = w1

F2 : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2

I Is this satisfiable?

I
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Example, cont

I Second subproblem:

F1 : f (x ) 6= f (w1) ∧ f (x ) 6= f (w2) ∧ x = w2

F2 : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2

I Is this satisfiable?

I

I Since neither subproblem is satisfiable, Nelson-Oppen returns
unsat for original formula
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Example II

I Consider the following T= ∪ TZ formula:

1 ≤ x ∧ x ≤ 3 ∧ f (x ) 6= f (1) ∧ f (x ) 6= f (3) ∧ f (1) 6= f (2)

I Formulas after purification:

F1 : f (x ) 6= f (w1) ∧ f (x ) 6= f (w3) ∧ f (w1) 6= f (w2)
F2 : 1 ≤ x ∧ x ≤ 3 ∧ w1 = 1 ∧ w2 = 2 ∧ w3 = 3

I Consider the query x = w1 ∨ x = w2 ∨ x = w3

I Does either formula imply this query?
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Example II, cont

I First subproblem:

F1 : f (x ) 6= f (w1) ∧ f (x ) 6= f (w3) ∧ f (w1) 6= f (w2) ∧ x = w1

F2 : 1 ≤ x ∧ x ≤ 3 ∧ w1 = 1 ∧ w2 = 2 ∧ w3 = 3

I Is this satisfiable?

I Second subproblem:

F1 : f (x ) 6= f (w1) ∧ f (x ) 6= f (w3) ∧ f (w1) 6= f (w2) ∧ x = w2

F2 : 1 ≤ x ∧ x ≤ 3 ∧ w1 = 1 ∧ w2 = 2 ∧ w3 = 3

I Is this satisfiable?
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Example II, cont

Second subproblem:

F1 : f (x ) 6= f (w1) ∧ f (x ) 6= f (w3) ∧ f (w1) 6= f (w2) ∧ x = w2

F2 : 1 ≤ x ∧ x ≤ 3 ∧ w1 = 1 ∧ w2 = 2 ∧ w3 = 3

I So it’s satisfiable, are we done?

I Are there any new implied equalities or disjunctions of
equalities?

I Thus, second subproblem is satisfiable

I Do we need to check third subproblem? No

I Thus, original formula is satisfiable
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Nelson-Oppen for Convex vs. Non-Convex Theories

I Nelson-Oppen method is much more efficient for convex
theories than for non-convex theories

I In convex theories:

1. need to issue one query for each pair of shared variables

2. If decision procedures for T1 and T2 have polynomial time
complexity, combination using Nelson-Oppen also has
polynomial complexity

I In non-convex theories:

1. need to consider disjunctions of equalities between each pair of
shared variables

2. If decision procedures for T1 and T2 have NP time complexity,
combination using Nelson-Oppen also has NP time complexity
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Summary

I Nelson-Oppen method gives a sound and complete decision
procedure for combination theories

I However, it only works for quantifier-free theories that are
infinitely stable

I Not a severe restriction because most theories of interest are
infinitely stable

I Next lecture: How to decide satisfiability in first-order theories
without converting to DNF
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