CS389L: Automated Logical Reasoning
Lecture 12: Decision Procedure for the
Theory of Rationals
\|ssl

The Plan
- Overview of linear programming
- Satisfiability as linear programming
- Simplex algorithm

Geometric Formulation

- For $m \times n$ matrix A, the system $A \vec{x} \leq \vec{b}$ forms a convex polytope in n-dimensional space
- Polytope is generalization of polyhedron from 3-dim space to higher dimensional space
- Convexity: For all pairs of points $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$ and for any $\lambda \in[0,1]$, the point $\lambda \overrightarrow{v_{1}}+(1-\lambda) \overrightarrow{v_{2}}$ also lies in polytope
- Goal of linear programming: Find a point that (i) lies inside the polytope, and (ii) maximizes the value of $\vec{c}^{T} \vec{x}$

Overview

- Today: Talk about how to decide satisfiability of the quantifier-free fragment of $T_{\mathbb{Q}}$
- We'll only consider quantifier free conjunctive $T_{\mathbb{Q}}$ formulas (i.e., no disjunctions)
- Most common technique for deciding satisfiability in $T_{\mathbb{Q}}$ is Simplex algorithm
- Simplex algorithm developed by Dantzig in 1949 for solving linear programming problems
- Since deciding satisfiability of qff conjunctive formulas is a special case of linear programming, we can use Simplex

Isil Dilis. CS389L: Automated Logical Ressoning Lecture 12: Decision Procedure for the Theay of Rationals
2/45

Linear Programming

- In a linear programming (LP) problem, we have an $m \times n$ matrix A, an m-dimensional vector \vec{b}, and n-dimensional vector \vec{c}
- Want to find a solution for \vec{x} maximizing objective function

$$
\vec{c}^{T} \vec{x}
$$

subject to linear inequality constraint

$$
A \vec{x} \leq \vec{b}
$$

- Very important problem; applications in airline scheduling, transportation, telecommunications, finance, production management, marketing, networking, compilers ...

Linear Programming Lingo

- In LP, a value of \vec{x} that satisfies constraints $A \vec{x} \leq \vec{b}$ called feasible solution; otherwise, called infeasible solution
- Example: Maximize $2 y-x$ subject to:

$$
\begin{array}{cl}
x+y & \leq 3 \\
2 x-y & \leq-5
\end{array}
$$

- Is $(0,0)$ a feasible solution?
-What about $(-2,1)$?
- For a given solution for \vec{x}, the corresponding value of objective function $\vec{c}^{T} \vec{x}$ called objective value
-What is objective value for $(-2,1)$?

Linear Prograaming Lingo, cont
- A feasible solution whose objective value is maximum over all
feasible solutions called optimal solution
- If a linear program has no feasible solutions, the linear
program is infeasible
- If optimal solution is ∞, then problem is called unbounded

Deciding $T_{\mathbb{Q}}$ as Linear Program

- How do we determine $T_{\mathbb{Q}}$ satisfiability using LP?
- First, convert $T_{\mathbb{Q}}$ formula to NNF.
- In this form, every atomic formula is of the form:

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \bowtie c \quad(\bowtie \in\{=, \neq, \geq,<\})
$$

- First, rewrite it as equisat formula containing only \leq and >0

$$
\begin{array}{rll}
\vec{a}^{T} \vec{x} \geq c & \Rightarrow & \\
\vec{a}^{T} \vec{x}<c & \Rightarrow & \\
\vec{a}^{T} \vec{x}=c & \Rightarrow & \\
\vec{a}^{T} \vec{x} \neq c & \Rightarrow & \left(\vec{a}^{T} \vec{x}+y \leq c \wedge y>0\right) \vee \\
& \left(-\vec{a}^{T} \vec{x}+y \leq-c \wedge y>0\right)
\end{array}
$$

Deciding $T_{\mathbb{Q}}$ as Linear Program, cont

- Each clause is of the following form:

$$
\begin{aligned}
& \bigwedge a_{i 1} x_{1}+\ldots+a_{i n} x_{n} \leq b_{i} \\
\wedge & \bigwedge \alpha_{i 1} x_{1}+\ldots+\alpha_{i n} x_{n}+y \leq \beta_{i} \\
\wedge & y>0
\end{aligned}
$$

- How can we decide whether this constraint is satisfiable by formulating it as an LP problem?
- This constraint is satisfiable iff the optimal solution of the following LP problem is strictly positive:

Maximize y
Subject to:

$$
\bigwedge a_{i 1} x_{1}+\ldots+a_{i n} x_{n} \leq b_{i} \wedge \bigwedge \alpha_{i 1} x_{1}+\ldots+\alpha_{i n} x_{n}+y \leq \beta_{i}
$$

- Why?

Geometric Interpretation

- Feasible solution is a point within the polytope
- The linear programming problem is infeasible if the polytope defined by $A \vec{x} \leq \vec{b}$ is empty
- An LP problem is unbounded if the polytope is open in the direction of the objective function
- Question: If polytope is not closed, does this mean optimal solution is ∞ ?
- Since the polytope defined by $A \vec{x} \leq \vec{b}$ is convex, the optimal solution for bounded LP problem must lie on exterior boundary of polytope

CS389L: Automated Logilig. Legial Ressoning Lecture 12: Decision Procedure for the Theory of Rationals
8/45

Deciding $T_{\mathbb{Q}}$ as Linear Program, cont

- Current formula in NNF and no negations
- Each atomic formula is one of three forms:

1. $a_{i 1} x_{1}+\ldots+a_{i n} x_{n} \leq b_{i}$
2. $\alpha_{i 1} x_{1}+\ldots+\alpha_{i n} x_{n}+y \leq \beta_{i}$
3. $y>0$

- Next, convert to DNF: Formula is satisfiable iff any of the clauses satisfiable
- Thus, want to formulate each clause as a linear program

Issl Dilis. CS389: Automated Logical Ressoning Lecture 12: Decision Procedure for the Theory of Rationals

Satisfiability as Linear Programming

- Thus, we can formulate satisfiability of every qff conjunctive $T_{\mathbb{Q}}$ formula as a linear programming problem.
- Three popular methods for solving LP problems:

1. Ellipsoid method (Khachian, 1979)
2. Interior-point algorithm (Karmarkar, 1984)
3. Simplex algorithm (Dantzig, 1949)

- Among these, ellipsoid and interior-point method are polynomial-time, but Simplex is worst-case exponential
- Despite this, Simplex remains most popular and performs better for most problems of interest

Prerequisites for Simplex - To apply Simplex, we have to transform linear inequality system into standard form and then into slack form - Standard form: $\begin{array}{ll} \text { Maximize } \overrightarrow{\vec{c}}^{T} \vec{x} & \\ \text { Subject to: } & A \vec{x} \leq \vec{b} \\ & \vec{x} \geq 0 \end{array}$ - Bad news: In general, not all problems require non-negative solution, thus $\vec{x} \leq 0$ requirement unrealistic - Good news: We can convert every LP problem into an equisatisfiable standard form representation - Equisat. means original problem has optimal objective value c iff problem in standard form has optimal objective value c

Standard Form Example

- Consider the following linear program:

$$
\begin{array}{lc}
\text { Maximize } & 2 x_{1}-3 x_{2} \\
\text { Subject to: } & x_{1}+x_{2} \leq 7 \\
-x_{1}-x_{2} \leq-7 \\
& x_{1}-2 x_{2} \leq 4 \\
& x_{1}>0
\end{array}
$$

- Variable x_{2} does not have non-negativity constraint; thus rewrite it as $x_{2}^{\prime}-x_{2}^{\prime \prime}$
- Equisatisfiable system in standard form:

$$
\begin{array}{lc}
\text { Maximize } & 2 x_{1}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime} \\
\text { Subject to: } & x_{1}+x_{2}^{\prime}-x_{2}^{\prime \prime} \leq 7 \\
& -x_{1}-x_{2}^{\prime}+x_{2}^{\prime \prime} \leq-7 \\
& x_{1}-2 x_{2}^{\prime}+2 x_{2}^{\prime \prime} \leq 4 \\
& x_{1}, x_{2}^{\prime}, x_{2}^{\prime \prime} \geq 0
\end{array}
$$

Dilig.	CS389: Automated Logical Ressoning Lecture 12: Decision Procedure for the Theory of Ratio	15/45

Slack Form Conversion Example

- Consider LP problem from previous example:

Maximize $\quad 2 x_{1}-3 x_{2}+3 x_{3}$
Subject to:

$$
\begin{gathered}
x_{1}+x_{2}-x_{3} \leq 7 \\
-x_{1}-x_{2}+x_{3} \leq-7 \\
x_{1}-2 x_{2}+2 x_{3} \leq 4 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

- In slack form:

$$
\begin{array}{ll}
\text { Maximize } & 2 x_{1}-3 x_{2}+3 x_{3} \\
\text { Subject to: } & x_{4}=7-x_{1}-x_{2}+x_{3} \\
& x_{5}=-7+x_{1}+x_{2}-x_{3} \\
& x_{6}=4-x_{1}+2 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{array}
$$

Conversion to Standard Form

- Main idea: Any negative variable can be written as difference of two non-negative integers
- For each such variable, introduce two new variables x_{i}^{\prime} and $x_{i}^{\prime \prime}$
- Add non-negativity constraints: $x_{i}^{\prime} \geq 0$ and $x_{i}^{\prime \prime} \geq 0$
- Express x_{i} as $x_{i}^{\prime}-x_{i}^{\prime \prime}$ by substituting $x_{i}^{\prime}-x_{i}^{\prime \prime}$ for each occurence of x_{i}

Conversion to Slack Form

- To apply Simplex, we need inequalities to be in slack form
- In slack form, we only have equalities; the only inequality allowed is non-negativity constraints
- For each inequality $A_{i} \vec{x} \leq b_{i}$, introduce a new slack variable s_{i}
- Slack variables measure the difference (i.e., "slack") between left-hand and right-hand side
- Rewrite inequality as equality $s_{i}=b_{i}-A_{i} x$ and introduce non-negativity constraint $s_{i} \geq 0$
|S531 Dilig. \quad CS89: Automated Logical Resosoning Leecture 12: Decision Procedure for the Theor of Rationas

Basic and Non-Basic Variables

- In slack form, there is exactly one variable on the left hand side of equalities
- Variables appearing on the left-hand side called basic variables
- Variables appearing on RHS called non-basic variables
- Invariant: Only non-basic variables can appear in the objective function
- Initially, all basic variables are slack variables, but this will change as algorithm proceeds

Slack Form: Summary

- We'll denote the set of basic variables by B and non-basic variables by N.
- Then we'll write the slack form as a set of equations of the following form:

$$
\begin{aligned}
& z=v+\sum_{x_{j} \in N} c_{j} x_{j} \quad \text { (objective function) } \\
& \left.x_{i}=b_{i}-\sum_{x_{j} \in N} a_{i j} x_{j} \quad \text { (for every } x_{i} \in B\right)
\end{aligned}
$$

- There are implicit non-negativity constraints on all variables, but we omit them
- Question: Given original matrix A is $m \times n$, what is $|B|$?
|sfl Dilis.

Simplex Algorithm Phases

- Simplex algorithm has two phases:

1. Phase I: Compute a feasible basic solution, if one exists
2. Phase II: Optimize value of objective function

- Understanding Phase I relies on understanding phase II
- Thus, we'll talk about Phase II first

Simplex Algorithm Optimization Phase

- When rewriting one slack form to another, goal is to increase value of objective function associated with basic solution
- Recall: Objective function is $z=v+\sum_{x_{j} \in N} c_{j} x_{j}$
- How can we increase value of z ?
- If there is a term $c_{j} x_{j}$ with positive c_{j}, we can increase value of z by increasing x_{j} 's value, i.e., by making x_{j} a basic variable
- What if there are no positive c_{j} 's?
- Then, we know we can't increase value of z, thus we are done!

Basic Solution

- For each LP problem in slack form, there is a basic solution
- To obtain basic solution, set all non-basic variables to zero
- Compute values of basic variables on the left-hand side
-What is basic solution for this slack form?

$$
\begin{aligned}
& z=3 x_{1}+x_{2}+2 x_{3} \\
& x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{6}=36-4 x_{1}-x_{2}-2 x_{3}
\end{aligned}
$$

- Basic solution called feasible basic solution if it doesn't violate non-negativity constraints

CS389: Automated Logical Ressoning Lecture 12: Decision Procedure for the Theory of Rationals
20/45

Simplex Algorithm Optimization Phase Overview

- Starting with a feasible basic solution, each iteration rewrites one slack form into an equivalent slack form
- This rewriting is similar to Gaussian elimination: involves pivot operations on matrix
- Geometrically, each iteration of Simplex "walks" from one vertex to an adjacent vertex until it reaches a local maximum
- By convexity, local optimum is global optimum; thus algorithm can safely stop when local maximum is reached

Simplex Algorithm Optimization Phase, cont

- Suppose we can increase objective value, i.e., there exists a term $c_{j} x_{j}$ with positive c_{j}
- We want to increase x_{j} 's value, but is there a limit on how much we can increase x_{j} ?
- Consider equality $x_{i}=b_{i}-a_{i j} x_{j}-\ldots$
- Observe: If $a_{i j}$ is positive and we increase x_{j} beyond $\frac{b_{i}}{a_{i j}}, x_{i}$ becomes negative and we violate constraints
- Thus, the amount by which we can increase x_{j} is limited by the smallest $\frac{b_{i}}{a_{i j}}$ among all i 's
- If there is no positive coefficient $a_{i j}$, we can increase x_{j} (and thus z) without limit \Rightarrow optimal solution $=\infty$
Summary
- Thus, fiven term $c_{j} x_{j}$ with positive c_{j} in objective function,
we want to increase x_{j} as much as possible
- To increase x_{j} as much as possible, we find equality that most
severely restricts how much we can increase x_{j}
- Equality that most severaly restricts x_{j} has following
characteristics:

1. x_{j} 's coefficient $a_{i j}$ is positive (otherwise doesn't limit x_{j})
2. has smallest value of $\frac{b_{i}}{a_{j}}$ (most severely restricting)

Simplex Optimization Phase Summary

- Pivot operation exchanges a basic variable with a non-basic variable to increase objective value of basic solution
- Simplex repeats this pivot operation until one of two conditions hold:

1. All coefficients in objective function are negative \Rightarrow optimal solution found
2. There exists a non-basic variable x_{j} with positive coefficient c_{j} in objective function, but all coefficients $a_{i j}$ are negative \Rightarrow optimal solution $=\infty$

Example, cont

- Plug this in for x_{1} in all other equations (i.e., pivot):

$$
\begin{aligned}
z & =27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4} \\
x_{1} & =9-\frac{x_{2}}{4}-\frac{x_{3}}{4}-\frac{x_{6}}{4} \\
x_{4} & =21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4} \\
x_{5} & =6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2}
\end{aligned}
$$

- How can we increase value of z ?
-
- Which equality restricts x_{3} the most?
- What is x_{3} in terms of x_{5}, x_{2}, x_{6} ?

$$
x_{3}=\frac{3}{2}-\frac{3}{8} x_{2}-\frac{1}{4} x_{5}+\frac{1}{8} x_{6}
$$

Simplex Algorithm Optimization Phase, cont

- Suppose equality with basic var. x_{i} is most restrictive for x_{j}
- Swap roles of x_{i} and x_{j} by making x_{j} basic and x_{i} non-basic
- To do this, rewrite x_{j} in terms of x_{i} and plug this in to all other equations; this operation is called a pivot
- After performing this pivot operation, what is new value of x_{j} ?
- We have increased the value of x_{j} from 0 to $\frac{b_{i}}{a_{i j}}$
- Thus, after performing pivot we still have feasible solution but objective value is now greater

Isl Dililig

Example

$$
\begin{aligned}
& z=3 x_{1}+x_{2}+2 x_{3} \\
& x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{6}=36-4 x_{1}-x_{2}-2 x_{3}
\end{aligned}
$$

- How can we increase value of objective function?
- Which equality restricts x_{1} the most?
- Rewrite x_{1} in terms of x_{6} :

$$
x_{1}=9-\frac{1}{4} x_{2}-\frac{1}{2} x_{3}-\frac{1}{4} x_{6}
$$

Example, cont

- New slack form after making x_{3} basic, x_{5} non-basic:
$z=\frac{111}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16}$
$x_{1}=\frac{33}{4}-\frac{x_{2}}{16}+\frac{x_{5}}{8}-\frac{5 x_{6}}{16}$
$x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}+\frac{x_{6}}{8}$
$x_{4}=\frac{69}{4}+\frac{3 x_{2}}{16}+\frac{5 x_{5}}{8}-\frac{x_{6}}{16}$
- Can we increase z ?
- Which equality restricts x_{2} the most?
-
- Solve x_{2} in terms of x_{3} :

$$
x_{2}=4-\frac{8}{3} x_{3}-\frac{2}{3} x_{5}+\frac{1}{3} x_{6}
$$

Example, cont.

- New slack form after making x_{2} basic, x_{3} non-basic:

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

- Can we increase objective value?
- What is optimal objective value?
- What is optimal solution?

Is Dililig.
CS389L: Automated Logical Reasoning Lecture 12: Decision Procedure for the Theory of Rationals
$31 / 45$

Degenerate Problems and Termination

- If problem is not degenerate, Simplex guaranteed to terminate for any pivot selection strategy (b/c objective value increases)
- Bad news: For degenerate problems, Simplex might not terminate
- Good news: There are pivot selection strategies for which Simplex is always guaranteed to terminate, even for degenerate problems
- One such strategy is Bland's rule: If there are multiple variables with positive coefficients in objective function, always choose the variable with smallest index
- Example: If $z=2 x_{1}+5 x_{2}-4 x_{3}$, Bland's rule chooses x_{1} as new basic variable since it has smallest index

Example of Infeasible Initial Basic Solution

- Consider the following linear program:

$$
\begin{aligned}
& z=2 x_{1}-x_{2} \\
& x_{3}=2-2 x_{1}+x_{2} \\
& x_{4}=-4-x_{1}+5 x_{2}
\end{aligned}
$$

-What is the initial basic solution?

- Clearly, this solution is not feasible
- Goal of Phase I of Simplex is to determine if a feasible basic solution exists, and if so, what it is

Degenerate Problems

- Can the objective value decrease between two successive iterations?
- Objective value can't decrease; but can it stay the same? Yes
- Example: Suppose we make x_{2} the new basic variable, and most constraining equality is:

$$
x_{1}=x_{2}+2 x_{3}+x_{4}
$$

- x_{2} 's old value was 0 ; what is its new value? Also 0
- These kinds of problems where objective value can stay the same after pivoting are called degenerate problems

CSs8gL: Automanted Logical Ressoning Leecure 12: Decision Procedure for the Theory of Rationals

Simplex Algorithm Phases

- Simplex algorithm has two phases:

1. Phase I: Compute a feasible basic solution, if one exists
2. Phase II: Optimize value of objective function

- So far, we talked about the second phase, assuming we already have a feasible basic solution
- However, the initial basic solution might not feasible even if the linear program is feasible
Isil Dillig. CSE89: Automated Logical Resesoning Lecture 12: Decision Procedure for the Theory of Rationals $34 / 45$

Overview of Phase I

- To find an initial basic solution, we construct an auxiliary linear program $L_{a u x}$
- This auxiliary linear program has the property that we can find a feasible basic solution for it after at most one pivot operation
- Furthermore, original LP problem has a feasible solution if and only if the optimal objective value for $L_{a u x}$ is zero
- If optimal value of $L_{\text {aux }}$ is 0 , we can extract basic feasible solution of original problem from optimal solution to $L_{a u x}$

Constructing the Auxiliary Linear Program

- Consider the original LP problem:

$$
\text { Maximize } \sum_{j=1}^{n} c_{j} x_{j}
$$

Subject to:

$$
\begin{array}{cc}
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & (i \in[1, m]) \\
x_{j} \geq 0 & (j \in[1, n])
\end{array}
$$

- This problem is feasible iff the following LP problem $L_{a u x}$ has optimal value 0 :

$$
\begin{aligned}
& \text { Maximize } \quad-x_{0} \\
& \text { Subject to: }
\end{aligned}
$$

$$
\begin{array}{cc}
\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} \leq b_{i} & (i \in[1, m]) \\
x_{j} \geq 0 & (j \in[0, n])
\end{array}
$$

CS389L: Automated Logical Reasoning Leecture 12: Decision Procedure for the Theory of Rationals

Finding Feasible Basic Solution for $L_{a u x}$

- So far, we argued that original problem L has feasible solution iff $L_{a u x}$ has optimal value 0 .
- But we still need to figure out how to find feasible basic solution to $L_{\text {aux }}$.
- Next: We'll see how we can find feasible basic solution for $L_{a u x}$ after one pivot operation.

Why is This True?

- Suppose this equality has most negative b_{i} :

$$
x_{i}=b_{i}+x_{0}-\sum_{j=1}^{n} a_{i j} x_{j}
$$

- Rewrite to make x_{0} basic:

$$
x_{0}=-b_{i}+x_{i}+\sum_{j=1}^{n} a_{i j} x_{j}
$$

- Now, $-b_{i}$ is positive and greater than all other $\left|b_{j}\right|$'s
- Thus, when we plug in equality for x_{0} into other equations, their new constants will be positive
- Hence, we find a feasible basic solution after at most one pivot step

Justification for Auxiliary LP
Maximize $-x_{0}$
Subject to:

$$
\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} \leq b_{i} \quad(i \in[1, m])
$$

\Rightarrow Suppose x_{0} has optimal value 0 . Then clearly $a_{i j} x_{j} \leq b_{i}$ is satisfied for all inequalities
$\Leftarrow(a)$ Suppose original problem has feasible solution $\overrightarrow{x^{*}}$. Then $\overrightarrow{x^{*}}$ combined with $x_{0}=0$ is feasible solution for $L_{a u x}$.
$\Leftarrow(b)$ Due to the non-negativity constraint, $-x_{0}$ can be at most 0 ; thus, this solution is optimal for $L_{\text {aux }}$.
${ }_{\text {Isin }}$
CS389L: Automated Logical Ressoning Lecture 12: Decision Procedure for the Theory of Rationals
38/45

Auxiliary Problem in Slack Form

$$
\begin{aligned}
z & =-x_{0} \\
x_{i} & =b_{i}+x_{0}-\sum_{j=1}^{n} a_{i j} x_{j}
\end{aligned}
$$

- If all b_{i} 's are positive, basic solution already feasible
- If there is at least some negative b_{i}, find equality x_{i} with most negative b_{i}
- Make x_{0} new basic variable, and x_{i} non-basic
- Claim: After this one pivot operation, all b_{i} 's are non-negative; thus basic solution is feasible

Example

- Consider the following linear program from earlier:

$$
\begin{aligned}
z & =2 x_{1}-x_{2} \\
x_{3} & =2-2 x_{1}+x_{2} \\
x_{4} & =-4-x_{1}+5 x_{2}
\end{aligned}
$$

- Construct $L_{\text {aux }}$:

$$
\begin{aligned}
& z=-x_{0} \\
& x_{3}=2+x_{0}-2 x_{1}+x_{2} \\
& x_{4}=-4+x_{0}-x_{1}+5 x_{2}
\end{aligned}
$$

- Which equation has most negative constant?
- Swap x_{4} and x_{0} :

$$
x_{0}=4+x_{4}+x_{1}-5 x_{2}
$$

\|sil Dilig.	CS399L: Automated Logical Ressoning Lecture 12: Decision Procedure for the Theory of Rationals	41/45

Example, cont

- After pivoting, we obtain the new slack form:

$$
\begin{aligned}
z & =-4-x_{4}-x_{1}+5 x_{2} \\
x_{3} & =6-x_{1}-4 x_{2}+x_{4} \\
x_{0} & =4+x_{4}+x_{1}-5 x_{2}
\end{aligned}
$$

- What is current objective value?
- How can we increase it?
- Which equation constrains x_{2} the most?
- Swap x_{2} and x_{0} :

$$
x_{2}=\frac{4}{5}-\frac{1}{5} x_{0}+x_{4}+x_{1}
$$

Example, cont

- After pivoting, new slack form:

$$
\begin{aligned}
& z=-x_{0} \\
& x_{2}=\frac{4}{5}-\frac{x_{0}}{5}-\frac{x_{1}}{5}+\frac{x_{4}}{5} \\
& x_{3}=\frac{14}{5}+\frac{4 x_{0}}{5}-\frac{9 x_{1}}{5}+\frac{x_{4}}{5}
\end{aligned}
$$

- Objective function cannot be increased, so we are done!
- In original problem, objective function was $z=2 x_{1}-x_{2}$
- Since x_{2} is now a basic variable, substitute for x_{2} with RHS:

$$
z=\frac{-4}{5}+\frac{9 x_{1}}{5}-\frac{x_{4}}{5}
$$

- Thus, Phase I returns the following slack form to Phase II:

$$
\begin{aligned}
z & =\frac{-4}{5}+\frac{9 x_{1}}{5}-\frac{x_{4}}{5} \\
x_{2} & =\frac{4}{5}-\frac{x_{1}}{5}+\frac{x_{4}}{5} \\
x_{3} & =\frac{14}{5}-\frac{9 x_{1}}{5}+\frac{x_{4}}{5}
\end{aligned}
$$

Summary

- To solve constraints in $T_{\mathbb{Q}}$ (linear inequalities over rationals), we use Simplex algorithm for LP
- Simplex has two phases
- In first phase, we construct slack form such that it has a basic feasible solution
- In second phase, we start with basic feasible solution and rewrite one slack form into equivalent one until objective value can't increase
- Although Simplex is a worst-case exponential, it is more popular than polynomial-time algorithms for LP

