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Overview

I Today: Talk about how to decide satisfiability of the
quantifier-free fragment of TQ

I We’ll only consider quantifier free conjunctive TQ formulas
(i.e., no disjunctions)

I Most common technique for deciding satisfiability in TQ is
Simplex algorithm

I Simplex algorithm developed by Dantzig in 1949 for solving
linear programming problems

I Since deciding satisfiability of qff conjunctive formulas is a
special case of linear programming, we can use Simplex
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The Plan

I Overview of linear programming

I Satisfiability as linear programming

I Simplex algorithm
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Linear Programming

I In a linear programming (LP) problem, we have an m × n
matrix A, an m-dimensional vector ~b, and n-dimensional
vector ~c

I Want to find a solution for ~x maximizing objective function

~cT~x

subject to linear inequality constraint

A~x ≤ ~b
I Very important problem; applications in airline scheduling,

transportation, telecommunications, finance, production
management, marketing, networking, compilers . . .
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Geometric Formulation

I For m × n matrix A, the system A~x ≤ ~b forms
a convex polytope in n-dimensional space

I Polytope is generalization of polyhedron from
3-dim space to higher dimensional space

I Convexity: For all pairs of points ~v1, ~v2 and for any λ ∈ [0, 1],
the point λ~v1 + (1− λ)~v2 also lies in polytope

I Goal of linear programming: Find a point that (i) lies inside
the polytope, and (ii) maximizes the value of ~cT~x
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Linear Programming Lingo

I In LP, a value of ~x that satisfies constraints A~x ≤ ~b called
feasible solution; otherwise, called infeasible solution

I Example: Maximize 2y − x subject to:

x + y ≤ 3
2x − y ≤ −5

I Is (0, 0) a feasible solution?

I What about (−2, 1)?

I For a given solution for ~x , the corresponding value of objective
function ~cT~x called objective value

I What is objective value for (−2, 1)?
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Linear Prograaming Lingo, cont

I A feasible solution whose objective value is maximum over all
feasible solutions called optimal solution

I If a linear program has no feasible solutions, the linear
program is infeasible

I If optimal solution is ∞, then problem is called unbounded
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Geometric Interpretation

I Feasible solution is a point within the polytope

I The linear programming problem is infeasible if
the polytope defined by A~x ≤ ~b is empty

I An LP problem is unbounded if the polytope is
open in the direction of the objective function

I Question: If polytope is not closed, does this mean optimal
solution is ∞?

I Since the polytope defined by A~x ≤ ~b is convex, the optimal
solution for bounded LP problem must lie on exterior
boundary of polytope
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Deciding TQ as Linear Program

I How do we determine TQ satisfiability using LP?

I First, convertTQ formula to NNF.

I In this form, every atomic formula is of the form:

a1x1 + a2x2 + . . .+ anxn ./ c (./∈ {=, 6=,≥, <})

I First, rewrite it as equisat formula containing only ≤ and > 0

~aT~x ≥ c ⇒
~aT~x < c ⇒
~aT~x = c ⇒
~aT~x 6= c ⇒ (~aT~x + y ≤ c ∧ y > 0)∨

(−~aT~x + y ≤ −c ∧ y > 0)
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Deciding TQ as Linear Program, cont

I Current formula in NNF and no negations

I Each atomic formula is one of three forms:

1. ai1x1 + . . .+ ainxn ≤ bi

2. αi1x1 + . . .+ αinxn + y ≤ βi

3. y > 0

I Next, convert to DNF: Formula is satisfiable iff any of the
clauses satisfiable

I Thus, want to formulate each clause as a linear program
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Deciding TQ as Linear Program, cont

I Each clause is of the following form:

∧
ai1x1 + . . .+ ainxn ≤ bi

∧ ∧
αi1x1 + . . .+ αinxn + y ≤ βi

∧ y > 0

I How can we decide whether this constraint is satisfiable by
formulating it as an LP problem?

I This constraint is satisfiable iff the optimal solution of the
following LP problem is strictly positive:

Maximize y
Subject to:∧

ai1x1 + . . .+ ainxn ≤ bi ∧
∧
αi1x1 + . . .+ αinxn + y ≤ βi

I Why?
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Satisfiability as Linear Programming

I Thus, we can formulate satisfiability of every qff conjunctive
TQ formula as a linear programming problem.

I Three popular methods for solving LP problems:

1. Ellipsoid method (Khachian, 1979)

2. Interior-point algorithm (Karmarkar, 1984)

3. Simplex algorithm (Dantzig, 1949)

I Among these, ellipsoid and interior-point method are
polynomial-time, but Simplex is worst-case exponential

I Despite this, Simplex remains most popular and performs
better for most problems of interest
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Prerequisites for Simplex

I To apply Simplex, we have to transform linear inequality
system into standard form and then into slack form

I Standard form:

Maximize ~cT~x
Subject to: A~x ≤ ~b

~x ≥ 0

I Bad news: In general, not all problems require non-negative
solution, thus ~x ≤ 0 requirement unrealistic

I Good news: We can convert every LP problem into an
equisatisfiable standard form representation

I Equisat. means original problem has optimal objective value c
iff problem in standard form has optimal objective value c
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Conversion to Standard Form

I Main idea: Any negative variable can be written as difference
of two non-negative integers

I For each such variable, introduce two new variables x ′i and x ′′i

I Add non-negativity constraints: x ′i ≥ 0 and x ′′i ≥ 0

I Express xi as x ′i − x ′′i by substituting x ′i − x ′′i for each
occurence of xi
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Standard Form Example
I Consider the following linear program:

Maximize 2x1 − 3x2
Subject to: x1 + x2 ≤ 7

−x1 − x2 ≤ −7
x1 − 2x2 ≤ 4

x1 ≥ 0

I Variable x2 does not have non-negativity constraint; thus
rewrite it as x ′2 − x ′′2

I Equisatisfiable system in standard form:

Maximize 2x1 − 3x ′2 + 3x ′′2
Subject to: x1 + x ′2 − x ′′2 ≤ 7

−x1 − x ′2 + x ′′2 ≤ −7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x
′
2, x
′′
2 ≥ 0
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Conversion to Slack Form

I To apply Simplex, we need inequalities to be in slack form

I In slack form, we only have equalities; the only inequality
allowed is non-negativity constraints

I For each inequality Ai~x ≤ bi , introduce a new slack variable si

I Slack variables measure the difference (i.e., ”slack”) between
left-hand and right-hand side

I Rewrite inequality as equality si = bi −Aix and introduce
non-negativity constraint si ≥ 0
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Slack Form Conversion Example

I Consider LP problem from previous example:

Maximize 2x1 − 3x2 + 3x3
Subject to:

x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7
x1 − 2x2 + 2x3 ≤ 4

x1, x2, x3 ≥ 0

I In slack form:

Maximize 2x1 − 3x2 + 3x3
Subject to:

x4 = 7− x1 − x2 + x3
x5 = −7 + x1 + x2 − x3
x6 = 4− x1 + 2x2 − 2x3
x1, x2, x3, x4, x5, x6 ≥ 0
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Basic and Non-Basic Variables

I In slack form, there is exactly one variable on the left hand
side of equalities

I Variables appearing on the left-hand side called basic variables

I Variables appearing on RHS called non-basic variables

I Invariant: Only non-basic variables can appear in the objective
function

I Initially, all basic variables are slack variables, but this will
change as algorithm proceeds
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Slack Form: Summary

I We’ll denote the set of basic variables by B and non-basic
variables by N .

I Then we’ll write the slack form as a set of equations of the
following form:

z = v +
∑

xj∈N
cj xj (objective function)

xi = bi −
∑

xj∈N
aij xj (for every xi ∈ B)

I There are implicit non-negativity constraints on all variables,
but we omit them

I Question: Given original matrix A is m × n, what is |B |?
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Basic Solution

I For each LP problem in slack form, there is a basic solution

I To obtain basic solution, set all non-basic variables to zero

I Compute values of basic variables on the left-hand side

I What is basic solution for this slack form?

z = 3x1 + x2 + 2x3
x4 = 30− x1 − x2 − 3x3
x5 = 24− 2x1 − 2x2 − 5x3
x6 = 36− 4x1 − x2 − 2x3

I Basic solution called feasible basic solution if it doesn’t violate
non-negativity constraints
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Simplex Algorithm Phases

I Simplex algorithm has two phases:

1. Phase I: Compute a feasible basic solution, if one exists

2. Phase II: Optimize value of objective function

I Understanding Phase I relies on understanding phase II

I Thus, we’ll talk about Phase II first
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Simplex Algorithm Optimization Phase Overview

I Starting with a feasible basic solution, each iteration rewrites
one slack form into an equivalent slack form

I This rewriting is similar to Gaussian elimination: involves
pivot operations on matrix

I Geometrically, each iteration of Simplex ”walks” from one
vertex to an adjacent vertex until it reaches a local maximum

I By convexity, local optimum is global optimum; thus
algorithm can safely stop when local maximum is reached
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Simplex Algorithm Optimization Phase

I When rewriting one slack form to another, goal is to increase
value of objective function associated with basic solution

I Recall: Objective function is z = v +
∑

xj∈N
cj xj

I How can we increase value of z?

I If there is a term cj xj with positive cj , we can increase value
of z by increasing xj ’s value, i.e., by making xj a basic variable

I What if there are no positive cj ’s?

I Then, we know we can’t increase value of z , thus we are done!
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Simplex Algorithm Optimization Phase, cont

I Suppose we can increase objective value, i.e., there exists a
term cj xj with positive cj

I We want to increase xj ’s value, but is there a limit on how
much we can increase xj ?

I Consider equality xi = bi − aij xj − . . .

I Observe: If aij is positive and we increase xj beyond bi
aij

, xi
becomes negative and we violate constraints

I Thus, the amount by which we can increase xj is limited by
the smallest bi

aij
among all i ’s

I If there is no positive coefficient aij , we can increase xj (and
thus z ) without limit ⇒ optimal solution = ∞
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Summary

I Thus, given term cj xj with positive cj in objective function,
we want to increase xj as much as possible

I To increase xj as much as possible, we find equality that most
severely restricts how much we can increase xj

I Equality that most severaly restricts xj has following
characteristics:

1. xj ’s coefficient aij is positive (otherwise doesn’t limit xj )

2. has smallest value of bi
aij

(most severely restricting)
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Simplex Algorithm Optimization Phase, cont

I Suppose equality with basic var. xi is most restrictive for xj

I Swap roles of xi and xj by making xj basic and xi non-basic

I To do this, rewrite xj in terms of xi and plug this in to all
other equations; this operation is called a pivot

I After performing this pivot operation, what is new value of xj ?

I We have increased the value of xj from 0 to bi
aij

I Thus, after performing pivot we still have feasible solution but
objective value is now greater
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Simplex Optimization Phase Summary

I Pivot operation exchanges a basic variable with a non-basic
variable to increase objective value of basic solution

I Simplex repeats this pivot operation until one of two
conditions hold:

1. All coefficients in objective function are negative ⇒ optimal
solution found

2. There exists a non-basic variable xj with positive coefficient cj
in objective function, but all coefficients aij are negative ⇒
optimal solution = ∞
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Example

z = 3x1 + x2 + 2x3
x4 = 30− x1 − x2 − 3x3
x5 = 24− 2x1 − 2x2 − 5x3
x6 = 36− 4x1 − x2 − 2x3

I How can we increase value of objective function?

I

I Which equality restricts x1 the most?

I Rewrite x1 in terms of x6:

x1 = 9− 1

4
x2 −

1

2
x3 −

1

4
x6

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 12: Decision Procedure for the Theory of Rationals 28/45

Example, cont
I Plug this in for x1 in all other equations (i.e., pivot):

z = 27 + x2
4 + x3

2 − 3x6
4

x1 = 9 − x2
4 − x3

4 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 + x6
4

x5 = 6 − 3x2
2 − 4x3 + x6

2

I How can we increase value of z?

I

I Which equality restricts x3 the most?

I What is x3 in terms of x5, x2, x6?

x3 =
3

2
− 3

8
x2 −

1

4
x5 +

1

8
x6
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Example, cont
I New slack form after making x3 basic, x5 non-basic:

z = 111
4 + x2

16 − x5
8 − 11x6

16
x1 = 33

4 − x2
16 + x5

8 − 5x6
16

x3 = 3
2 − 3x2

8 − x5
4 + x6

8
x4 = 69

4 + 3x2
16 + 5x5

8 − x6
16

I Can we increase z?

I Which equality restricts x2 the most?

I

I Solve x2 in terms of x3:

x2 = 4− 8

3
x3 −

2

3
x5 +

1

3
x6
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Example, cont.

I New slack form after making x2 basic, x3 non-basic:

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 + x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 + x6
3

x4 = 18 − x3
2 + x5

2

I Can we increase objective value?

I What is optimal objective value?

I What is optimal solution?
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Degenerate Problems

I Can the objective value decrease between two successive
iterations?

I Objective value can’t decrease; but can it stay the same? Yes

I Example: Suppose we make x2 the new basic variable, and
most constraining equality is:

x1 = x2 + 2x3 + x4

I x2’s old value was 0; what is its new value? Also 0

I These kinds of problems where objective value can stay the
same after pivoting are called degenerate problems
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Degenerate Problems and Termination

I If problem is not degenerate, Simplex guaranteed to terminate
for any pivot selection strategy (b/c objective value increases)

I Bad news: For degenerate problems, Simplex might not
terminate

I Good news: There are pivot selection strategies for which
Simplex is always guaranteed to terminate, even for
degenerate problems

I One such strategy is Bland’s rule: If there are multiple
variables with positive coefficients in objective function,
always choose the variable with smallest index

I Example: If z = 2x1 + 5x2 − 4x3, Bland’s rule chooses x1 as
new basic variable since it has smallest index
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Simplex Algorithm Phases

I Simplex algorithm has two phases:

1. Phase I: Compute a feasible basic solution, if one exists

2. Phase II: Optimize value of objective function

I So far, we talked about the second phase, assuming we
already have a feasible basic solution

I However, the initial basic solution might not feasible even if
the linear program is feasible
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Example of Infeasible Initial Basic Solution

I Consider the following linear program:

z = 2x1 − x2
x3 = 2− 2x1 + x2
x4 = −4− x1 + 5x2

I What is the initial basic solution?

I Clearly, this solution is not feasible

I Goal of Phase I of Simplex is to determine if a feasible basic
solution exists, and if so, what it is
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Overview of Phase I

I To find an initial basic solution, we construct an auxiliary
linear program Laux

I This auxiliary linear program has the property that we can find
a feasible basic solution for it after at most one pivot operation

I Furthermore, original LP problem has a feasible solution if and
only if the optimal objective value for Laux is zero

I If optimal value of Laux is 0, we can extract basic feasible
solution of original problem from optimal solution to Laux
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Constructing the Auxiliary Linear Program
I Consider the original LP problem:

Maximize
n∑

j=1
cj xj

Subject to:

n∑
j=1

aij xj ≤ bi (i ∈ [1,m])

xj ≥ 0 (j ∈ [1,n])

I This problem is feasible iff the following LP problem Laux has
optimal value 0:

Maximize −x0
Subject to:

n∑
j=1

aij xj − x0 ≤ bi (i ∈ [1,m])

xj ≥ 0 (j ∈ [0,n])
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Justification for Auxiliary LP

Maximize −x0
Subject to:

n∑
j=1

aij xj − x0 ≤ bi (i ∈ [1,m])

xj ≥ 0 (j ∈ [0,n])

⇒ Suppose x0 has optimal value 0. Then clearly aij xj ≤ bi is satisfied
for all inequalities

⇐ (a) Suppose original problem has feasible solution ~x∗. Then ~x∗

combined with x0 = 0 is feasible solution for Laux .

⇐ (b) Due to the non-negativity constraint, −x0 can be at most 0; thus,
this solution is optimal for Laux .
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Finding Feasible Basic Solution for Laux

I So far, we argued that original problem L has feasible solution
iff Laux has optimal value 0.

I But we still need to figure out how to find feasible basic
solution to Laux .

I Next: We’ll see how we can find feasible basic solution for
Laux after one pivot operation.
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Auxiliary Problem in Slack Form

z = −x0
xi = bi + x0 −

n∑
j=1

aij xj

I If all bi ’s are positive, basic solution already feasible

I If there is at least some negative bi , find equality xi with most
negative bi

I Make x0 new basic variable, and xi non-basic

I Claim: After this one pivot operation, all bi ’s are
non-negative; thus basic solution is feasible
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Why is This True?
I Suppose this equality has most negative bi :

xi = bi + x0 −
n∑

j=1

aij xj

I Rewrite to make x0 basic:

x0 = −bi + xi +
n∑

j=1

aij xj

I Now, −bi is positive and greater than all other |bj |’s

I Thus, when we plug in equality for x0 into other equations,
their new constants will be positive

I Hence, we find a feasible basic solution after at most one
pivot step
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Example
I Consider the following linear program from earlier:

z = 2x1 − x2
x3 = 2− 2x1 + x2
x4 = −4− x1 + 5x2

I Construct Laux :

z = −x0
x3 = 2 + x0 − 2x1 + x2
x4 = −4 + x0 − x1 + 5x2

I Which equation has most negative constant?

I Swap x4 and x0:

x0 = 4 + x4 + x1 − 5x2
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Example, cont

I After pivoting, we obtain the new slack form:

z = −4− x4 − x1 + 5x2
x3 = 6− x1 − 4x2 + x4
x0 = 4 + x4 + x1 − 5x2

I What is current objective value?

I How can we increase it?

I Which equation constrains x2 the most?

I Swap x2 and x0:

x2 =
4

5
− 1

5
x0 + x4 + x1
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Example, cont
I After pivoting, new slack form:

z = −x0
x2 = 4

5 − x0
5 − x1

5 + x4
5

x3 = 14
5 + 4x0

5 − 9x1
5 + x4

5

I Objective function cannot be increased, so we are done!

I In original problem, objective function was z = 2x1 − x2

I Since x2 is now a basic variable, substitute for x2 with RHS:

z =
−4
5

+
9x1
5
− x4

5

I Thus, Phase I returns the following slack form to Phase II:

z = −4
5 + 9x1

5 − x4
5

x2 = 4
5 − x1

5 + x4
5

x3 = 14
5 − 9x1

5 + x4
5
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Summary

I To solve constraints in TQ (linear inequalities over rationals),
we use Simplex algorithm for LP

I Simplex has two phases

I In first phase, we construct slack form such that it has a basic
feasible solution

I In second phase, we start with basic feasible solution and
rewrite one slack form into equivalent one until objective value
can’t increase

I Although Simplex is a worst-case exponential, it is more
popular than polynomial-time algorithms for LP
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