CS389L: Automated Logical Reasoning Lecture 11: Theory of Equality with Uninterpreted Functions Ișıl Dillig	Review - Previous lecture: talked about signature and axioms of $T_{=}$ $\Sigma_{=}:\{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots\}$ - Axioms: 1. $\forall x . x=x$ (reflexivity) 2. $\forall x, y . x=y \rightarrow y=x$ (symmetry) 3. $\forall x, y, z \cdot x=y \wedge y=z \rightarrow x=z$ (transitivity) 4. $\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \bigwedge_{i} x_{i}=y_{i}$ $\rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$ (congruence) 5. for each positive integer n and n-ary predicate symbol p, $\begin{aligned} & \forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \cdot \bigwedge_{i} x_{i}=y_{i} \rightarrow \\ & \quad\left(p\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots, y_{n}\right)\right) \end{aligned} \quad \text { (equivalence) }$
Smont	
Overview - Today: look at decision procedures for deciding satisfiability in the quantifier-free fragment of $T_{=}$ - However, our decision procedure has two "restrictions": - formulas consist of conjunctions of literals - we'll allow functions, but no predicates - However, these "restrictions" are not real restrictions - why?	Eliminating Predicates - Simple transformation yields equisatisfiable formula with only functions - The trick: For each relation constant p : 1. introduce a fresh function constant f_{p} 2. rewrite $p\left(x_{1}, \ldots, x_{n}\right)$ as $f_{p}\left(x_{1}, \ldots, x_{n}\right)=t$ where t is a fresh object constant - Example: How do we transform $x=y \rightarrow(p(x) \leftrightarrow p(y))$ to equisat formula?
Sil	fillums
$T=$ without Predicates - Signature without predicates: $\Sigma_{=}:\{=, a, b, c, \ldots, f, g, h, \ldots\}$ - Axioms: 1. $\forall x . x=x$ (reflexivity) 2. $\forall x, y . x=y \rightarrow y=x$ (symmetry) 3. $\forall x, y, z \cdot x=y \wedge y=z \rightarrow x=z$ (transitivity) 4. $\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \bigwedge_{i} x_{i}=y_{i}$ $\rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$ (congruence)	Examples - Let's consider some examples - Is the formula $x \neq y \wedge f(x)=f(y)$ sat, unsat, valid? - What about $x=g(y, z) \rightarrow f(x)=f(g(y, z))$? - What about $f(a)=a \wedge f(f(a)) \neq a$? - What about $f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge f(a) \neq a$?
Yip inicemen	(titure

Equivalence Relations
- Decision procedure for theory of equality known as congruence
closure algorithm
- Computes the congruence closure of the binary relation
defined by formula \Rightarrow need to understand congruence closure
- A binary relation R over a set S is an equivalence relation if
1. reflexive: $\forall s \in S$. $s R s$
2. symmetric: $\forall s_{1}, s_{2} \in S . s_{1} R s_{2} \rightarrow s_{2} R s_{1} ;$
3. transitive: $\forall s_{1}, s_{2}, s_{3} \in S . s_{1} R s_{2} \wedge s_{2} R s_{3} \rightarrow s_{1} R s_{3}$.

Congruence Relations

- Consider set S equipped with functions $F=\left\{f_{1}, \ldots, f_{n}\right\}$
- A relation R over S is a congruence relationif it is an equivalence relation and for every n 'ary function $f \in F$:

$$
\forall \vec{s}, \vec{t} . \bigwedge_{i=1}^{n} s_{i} R t_{i} \rightarrow f(\vec{s}) R f(\vec{t})
$$

- Which of these are congruence relations?
- The relation $=$ on \mathbb{N} equipped with a successor function?
- The relation \equiv_{2} on \mathbb{N} equipped with a successor function?
- The relation $R(x, y)$ defined as $|x|=|y|$ on \mathbb{Z} equipped with successor function?

\|sil Dilig,	CS389: Automated Logical Ressoning Lecture 11: Theory of Equality with Uninterpreted functions	9/37

Equivalence Closure

- The equivalence closure R^{E} of a binary relation R over S is the equivalence relation such that:

1. $R \subseteq R^{E}$
2. for all other equivalence relations R^{\prime} s.t. $R \subseteq R^{\prime}, R^{E} \subseteq R^{\prime}$

- Thus, R^{E} is the smallest equivalence relation that includes R.

Examples

- Which of these are equivalence relations?
- The relation \equiv_{2} over \mathbb{Z} ?
- The relation \geq over \mathbb{N} ?
- The relation $R(x, y)$ defined as $|x|=|y|$ on \mathbb{R} ?

8/37

Equivalence and Congruence Classes

- For a given equivalence relation over S, every member of S belongs to an equivalence class
- The equivalence class of $s \in S$ under R is the set:

$$
[s]_{R} \stackrel{\text { def }}{=}\left\{s^{\prime} \in S: s R s^{\prime}\right\}
$$

- If R is a congruence relation, then this set is called congruence class
- Example: What is the equivalence class of 1 under \equiv_{2} ?
- What is the equivalence class of 6 under \equiv_{3} ?

Isil Dilig. CS389: Automated Logical Reasoning Leecture 11: Theory of Equality with Uniterpereted functions

Equivalence Closure Example

- Consider set $S=\{a, b, c, d\}$ and binary relation

$$
R:\{\langle a, b\rangle,\langle b, c\rangle,\langle d, d\rangle\}
$$

- Is R an equivalence relation?
- What is the equivalence closure of R ?

Congruence Closure
- Given a set S and binary relation R, we also define
congruence closure of R
- Congruence closure is similar to equivalence closure, but it is
the smallest congruence relation that covers R
- Formally, the congruence closure R^{C} of a binary relation R
over S is the congruence relation such that:
1. $R \subseteq R^{E}$
2. for all other congruence relations R^{\prime} s.t. $R \subseteq R^{\prime}, R^{E} \subseteq R^{\prime}$

Congruence Closure Algorithm

- The decision procedure for $T_{=}$computes congruence closure of equality over the subterm set of formula
- Subterm set S_{F} of F is the set of all subterms of F
- Example: Consider formula $F: f(a, b)=a \wedge f(f(a, b), b) \neq a$
- What is S_{F} ?

\|sal Dilis.	CS389: Automated Logical Ressoning Leeture 11: Theory of Equality with Uninterpereded Functions	15/37

Congruence Closure Algorithm: Basic Idea

Congruence closure algorithm decide satisfiability of

$$
F: s_{1}=t_{1} \wedge \ldots s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_{n} \neq t_{n}
$$

1. Construct the congruence closure \sim of R_{F} (defined previously) over the subterm set S_{F}.
2. If $s_{i} \sim t_{i}$ for any i in $[m+1, n], F$ is unsatisfiable
3. Otherwise, F is satisfiable

Example

- Consider the set $S=\{a, b, c\}$ and function f such that:

$$
f(a)=b, f(b)=c, f(c)=c
$$

- What is the congruence closure of relation $\{\langle a, b\rangle\}$?

Satisfiability using Congruence Relations

- We can now define satisfiability of a $\Sigma_{=}$formula in terms of congruence closure over subterm set
- Consider $\Sigma_{=}$formula F :

$$
F: s_{1}=t_{1} \wedge \ldots s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_{n} \neq t_{n}
$$

- Let $R_{F}=\left\{\langle x, y\rangle \mid x=s_{i}, y=t_{i}, i \in[1, m]\right\}$
- Theorem: F is satisfiable if the congruence closure \sim of R_{F} satisfies $s_{i} \nsim t_{i}$ for all $i \in[m+1, n]$

CS38g: Automated Logical Reasosing Leecture 11: Theory of Equality with Uninterpreted Functions

Example

- Consider the formula $F: f(a, b)=a \wedge f(f(a, b), b) \neq a$
- We'll represent \sim as a set of congruence classes, i.e., if t_{1} and t_{2} are in the same set, this means $t_{1} \sim t_{2}$, otherwise $t_{1} \nsim t_{2}$
- First, construct subterm set S_{F} and place each subterm in a separate set:
- Because of equality $f(a, b)=a$, merge congruence classes of $f(a, b)$ and a :

Example, cont

- Formula $F: f(a, b)=a \wedge f(f(a, b), b) \neq a$
- Current congruence classes:

$$
\{\{a, f(a, b)\},\{b\},\{f(f(a, b), b)\}\}
$$

- Using $a \sim f(a, b)$ and $b \sim b$, what does function congruence imply?
- Thus, merge congruence classes of $f(a, b)$ and $f(f(a, b), b)$:

$$
\{\{a, f(a, b), f(f(a, b), b)\},\{b\}\}
$$

- This represents the congruence closure over S_{F}.

Isil Dilis. CS389L: Automated Logical Ressoning Leeture 11: Theory of Equality with Uninterpereted Functions

Another Example

- Consider formula:

$$
F: f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge f(a) \neq a
$$

- What is the subterm set S_{F} ?
- Initially, place each subterm in its own congruence class:

$$
\left\{\{a\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{3}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

- Because of equality $f^{3}(a)=a, f^{3}(a)$ and a are placed in same congruence class:

Another Example, cont

- Formula $F: f^{3}(a)=a \wedge f^{5}(a)=a \wedge f(a) \neq a$
- Current congruence classes:

$$
\left\{\left\{a, f^{3}(a)\right\},\left\{f(a), f^{4}(a)\right\},\left\{f^{2}(a), f^{5}(a)\right\}\right\}
$$

- Now, process equality $f^{5}(a)=a$; which classes do we merge?
- From $a=f^{2}(a)$, what can we infer via function congruence?
- Thus, merge the two congruence classes:

$$
\left\{\left\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\right\}\right\}
$$

Example, cont

- Formula $F: f(a, b)=a \wedge f(f(a, b), b) \neq a$
- Congruence closure: $\{\{a, f(a, b), f(f(a, b), b)\},\{b\}\}$
- Is F satisfiable?
- Since a and $f(f(a, b), b)$ are in same congruence class, we have $a \sim f(f(a, b), b)$
- This contradicts $f(f(a, b), b) \neq a$!

CS389: Automated Logical Reasoning Leecture 11: Theory of Equality with Uninterpereted Functions
20/37

Another Example, cont

- Formula $F: f^{3}(a)=a \wedge f^{5}(a)=a \wedge f(a) \neq a$
- Current congruence classes:

$$
\left\{\left\{a, f^{3}(a)\right\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

- From $a=f^{3}(a)$, what can we infer using function congruence?
- Resulting congruence classes:

\|sil Dilig. \quad CS389: Automated Logical Reasoning Lecture 11: Theor of Equaity with Uninterpeted Functions ${ }^{\text {a }}$				

Another Example, cont

- Formula $F: f^{3}(a)=a \wedge f^{5}(a)=a \wedge f(a) \neq a$
- Currenct congruence classes:

$$
\left\{\left\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\right\}\right\}
$$

- Is the formula satisfiable?
- Since $f(a)$ and a are in same congruence class, this contradicts $f(a) \neq a$

One More Example
- Consider formula $F: f(x)=f(y) \wedge x \neq y$
- What is the subterm set? $\{x, y, f(x), f(y)\}$
- Each subterm starts in its own congruence class:
$\{\{x\},\{y\},\{f(x)\},\{f(y)\}\}$
- Process equality $f(x)=f(y) \Rightarrow$
- What new equalities can we infer from congruence?
- Is the formula satisfiable?

- Each subterm contains a find pointer that eventually leads to the representative of its congruence class (representative points to itself)
- In this example, $a, f(a, b), f(f(a, b), b)$ are in same congruence class; a is the representative

Algorithm to Compute Congruence Closure

- To compute congruence closure efficiently, we'll represent the subterm set of the formula as a DAG

- Each node corresponds to a subterm and has unique id
- Edges point from function symbol to arguments
- Question: What subterm does node labeled 1 represent? $f(f(a, b), b)$

Merging Congruence Classes

- Using this data structure, how do we merge congruence classes of two terms t_{1} and t_{2} ?
- First find representatives of t_{1} and t_{2} by chasing pointers
- Want to make $\operatorname{Rep}\left(t_{2}\right)$ new representative for merged class
- Thus, change find field of $\operatorname{Rep}\left(t_{1}\right)$ to point to $\operatorname{Rep}\left(t_{2}\right)$
- Update parents: add parent terms stored in $\operatorname{Rep}\left(t_{1}\right)$ to those of $\operatorname{Rep}\left(t_{2}\right)$, and remove parents stored in $\operatorname{Rep}\left(t_{1}\right)$
- In addition to efficiently finding representative, also need to efficiently find parents of terms - why?
- Thus, keep pointer from representative of congruence class to parents of all subterms in the congruence class
- If a term is not a representative, then its parents field is empty

Parents of a Subterm

CSIl Dilif. C389L: Automated Logical Ressoning Lecture 11: Theory of Equality with Uninterpereted Functions

Processing Equalities, cont

To process equality $t_{1}=t_{2}$:

1. Find representatives of t_{1} and t_{2}
2. Merge equivalence classes
3. Retrieve the set of parents P_{1}, P_{2} stored in $\operatorname{Rep}\left(t_{1}\right), \operatorname{Rep}\left(t_{2}\right)$
4. For each $\left(p_{i}, p_{j}\right) \in P_{1} \times P_{2}$, if p_{i} and p_{j} are congruent, process equality $p_{i}=p_{j}$

Observe: Processing one equality creates new equalities, which in turn might generate other new equalities!

Full Algorithm for Deciding Satisfiability

Algorithm to decide satisfiability of $T_{=}$formula

$$
F: s_{1}=t_{1} \wedge \ldots s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_{n} \neq t_{n}
$$

1. Compute subterms and construct initial DAG (each node's representative is itself)
2. For each $i \in[1, m]$, process equality $s_{i}=t_{i}$ as described
3. For each $i \in[m+1, n]$, check if $\operatorname{Rep}\left(s_{i}\right)=\operatorname{Rep}\left(t_{i}\right)$
4. If there exists some $i \in[m+1, n]$ for which
$\operatorname{Rep}\left(s_{i}\right)=\operatorname{Rep}\left(t_{i}\right)$, return UNSAT
5. If for all $i, \operatorname{Rep}\left(s_{i}\right) \neq \operatorname{Rep}\left(t_{i}\right)$, return SAT
|ssl Dilis. CS389.: Automated Logical Resosoning Leeture 11: Theory of Equatity with Uninterpeted Functions

Example II

- Consider formula: $F: f^{3}(a)=a \wedge f^{5}(a)=a \wedge f(a) \neq a$
- Initial DAG:

- Process equality $f^{3}(a)=a$:

- Are parents congruent? Yes
- Process equality $f^{4}(a)=f(a)$

Example II, cont

- Formula: $F: f^{3}(a)=a \wedge f^{5}(a)=a \wedge f(a) \neq a$

- Process equality $f^{5}(a)=a$:

- Now, parents $f^{2}(a)$ and a congruent; so process equality $f^{3}(a)=f(a)$

Example

- Consider formula $F: f(a, b)=a \wedge f(f(a, b), b) \neq a$
- Subterms: $a, b, f(a, b), f(f(a, b), b)$

- Construct initial DAG
- Process equality $f(a, b)=a$
- Are parents $f(a, b)$ and $f(f(a, b), b)$ congruent?
- Yes, so process equality $f(a, b)=f(f(a, b), b)$
- Formula unsatisfiable because $f(f(a, b), b)$ and a have same representative!

Isl Dillis,
CS389: Automated Logical Reasoning Leecture 11: Theory of Equality with Uninteferpeted functions
32/37

Example II, cont

- After merging classes:

- Are $f^{4}(a)$'s and $f(a)$'s parents congruent? Yes
- Process equality $f^{5}(a)=f^{2}(a)$

Example II, cont

- Formula: $F: f^{3}(a)=a \wedge f^{5}(a)=a \wedge f(a) \neq a$

- Now, everything in same congruence class; so we are done.
- Formula UNSAT because a and $f(a)$ have same representative

Summary

- Congruence closure algorithm is used for determining satisfiability of $T_{=}$formulas (without disjunction)
- Deciding conjuctive $T_{=}$formulas is inexpensive: our algorithm is $O\left(e^{2}\right)$, but can be solved in $O(e \log (e))$
- To decide satisfiability of formulas containing disjunctions, can either convert to DNF or use $\operatorname{DPLL}(\mathcal{T})$ (more on this later)

