AAA528: Computational Logic

Lecture 8 - Decision Procedures for Theory of Equality

Hakjoo Oh
2018 Fall

Goal

Decision procedures for deciding satisfiability in theory of equality.

- quantifier-free fragment (otherwise, undecidable)
- conjunctions of literals (no disjunctions)
- no predicate symbols

Theory of Equality (with Uninterpreted Functions)

The theory of equality $\boldsymbol{T}_{\boldsymbol{E}}$ is the simplest and most widely-used first-order theory. Its signature

$$
\Sigma_{E}:\{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots\}
$$

consists of

- = (equality), a binary predicate;
- and all constant, function, and predicate symbols.

Equality $=$ is an interpreted predicate symbol; its meaning will be defined via the axioms. The others are uninterpreted since functions, predicates, and constants are left unspecified.

Theory of Equality (with Uninterpreted Functions)

The axioms of $\boldsymbol{T}_{\boldsymbol{E}}$:
(1) Reflexivity: $\forall x . x=x$
(2) Symmetry: $\forall x, y \cdot x=y \Longrightarrow y=x$
(3) Transitivity: $\forall x, y, z \cdot x=y \wedge y=z \Longrightarrow x=z$
(9) Function congruence (consistency): for each positive integer \boldsymbol{n} and \boldsymbol{n}-ary function symbol \boldsymbol{f},

$$
\forall \vec{x}, \vec{y} \cdot\left(\bigwedge_{i=1}^{n} x_{i}=y_{i}\right) \rightarrow f(\vec{x})=f(\vec{y})
$$

(3) Predicate congruence (consistency): for each positive integer \boldsymbol{n} and \boldsymbol{n}-ary predicate symbol \boldsymbol{p},

$$
\forall \vec{x}, \vec{y} \cdot\left(\bigwedge_{i=1}^{n} x_{i}=y_{i}\right) \rightarrow(p(\vec{x}) \leftrightarrow p(\vec{y}))
$$

Examples

Decide satisfiability of formulas:

- $f(x)=f(y) \wedge x \neq y$
- $x=y \wedge f(x) \neq f(y)$
- $f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge f(a) \neq a$

Eliminating Predicates

- Simple reduction of formulas with uninterpreted predicates to equisatisfiable formulas without predicates other than $=$.
- For example, the formulas

$$
x=y \rightarrow(p(x) \leftrightarrow p(y))
$$

is transformed into

$$
x=y \rightarrow\left(\left(f_{p}(x)=\bullet\right) \leftrightarrow\left(f_{p}(y)=\bullet\right)\right)
$$

where \bullet is a fresh constant and f_{p} is a fresh function.

- Exercise:

$$
p(x) \wedge q(x, y) \wedge q(y, z) \rightarrow \neg q(x, z)
$$

Congruence Relations

- A binary relation \boldsymbol{R} over a set \boldsymbol{S} is an equivalence relation if it is
- reflexive: $\forall s \in S . s R s$
- symmetric: $\forall s_{1}, s_{2} \in S$. $s_{1} R s_{2} \rightarrow s_{2} R s_{1}$
- transitive: $\forall s_{1}, s_{2}, s_{3} \in S . s_{1} R s_{2} \wedge s_{2} R s_{3} \rightarrow s_{1} R s_{3}$
- A binary relation \boldsymbol{R} over set \boldsymbol{S} equipped with functions $F=\left\{f_{1}, \ldots, f_{n}\right\}$ is a congruence relation if it equivalence relation and obeys congruence: for every \boldsymbol{n}-ary function $\boldsymbol{f} \in \boldsymbol{F}$,

$$
\forall \vec{s}, \vec{t} .\left(\bigwedge_{i=1}^{n} s_{i} R t_{i}\right) \rightarrow f(\vec{s}) R f(\vec{t})
$$

Examples

- Which of these are equivalence relations?
- \equiv_{2} over \mathbb{Z}
- \geq over \mathbb{N}
- $\boldsymbol{R}(\boldsymbol{x}, \boldsymbol{y})$ defined as $|\boldsymbol{x}|=|\boldsymbol{y}|$ over \mathbb{R}
- Which of these are congruence relations?
- = over \mathbb{N} equipped with successor function
- \equiv_{2} over \mathbb{N} equipped with successor function
- $\boldsymbol{R}(\boldsymbol{x}, \boldsymbol{y})$ defined as $|\boldsymbol{x}|=|\boldsymbol{y}|$ over \mathbb{R} equipped with successor function

Classes and Partitions

- For an equivalence relation \boldsymbol{R} over a set \boldsymbol{S}, the equivalence class of $s \in \boldsymbol{S}$ under \boldsymbol{R} is defined as follows:

$$
[s]_{R}=\left\{s^{\prime} \in S \mid s R s^{\prime}\right\}
$$

- If \boldsymbol{R} is a congruence relation, $[s]_{R}$ is the congruence class of s.
- What is the equivalence class of $\mathbf{3}$ under \equiv_{2} ?
- A partition P of S is a set of subsets of S such that $\bigcup_{S^{\prime} \in P} S^{\prime}=S$ (total) and $\forall S_{1}, S_{2} \in P . S_{1} \neq S_{2} \rightarrow S_{1} \cap S_{2}=\emptyset$ (disjoint).
- The quotient $\boldsymbol{S} / \boldsymbol{R}$ of \boldsymbol{S} by the equivalence (congruence) relation \boldsymbol{R} is a partition of S : it is a set of equivalence (congruence) classes

$$
\boldsymbol{S} / \boldsymbol{R}=\left\{[s]_{R} \mid s \in S\right\}
$$

- What is \mathbb{Z} / \equiv_{2} ?

Equivalence / Congruence Closure

- The equivalence closure $\boldsymbol{R}^{\boldsymbol{E}}$ of the binary relation \boldsymbol{R} over \boldsymbol{S} is the equivalence relation such that
- $R \subseteq R^{E}$
- for all other equivalence relation \boldsymbol{R}^{\prime} such that $\boldsymbol{R} \subseteq \boldsymbol{R}^{\prime}, \boldsymbol{R}^{E} \subseteq \boldsymbol{R}^{\prime}$ That is, $\boldsymbol{R}^{\boldsymbol{E}}$ is the smallest equivalence relation that includes \boldsymbol{R}.
- What is the equivalence closure of $R=\{(a, b),(b, c),(d, d)\}$ over $S=\{a, b, c, d\} ?$
- The congruence closure \boldsymbol{R}^{C} of the binary relation \boldsymbol{R} over \boldsymbol{S} is the congruence relation such that
- $R \subseteq R^{C}$
- for all other congruence relation R^{\prime} such that $R \subseteq R^{\prime}, R^{C} \subseteq R^{\prime}$
- What is the congruence closure of $R=\{(a, b)\}$ over $S=\{a, b, c\}$ equipped with function f such that $f(a)=b, f(b)=c, f(c)=c$?

Satisfiability in terms of Congruence Closure

- The subterm set $\boldsymbol{S}_{\boldsymbol{F}}$ of formula \boldsymbol{F} is the set that contains the subterms of \boldsymbol{F}.
- What is S_{F} for $F: f(a, b)=a \wedge f(f(a, b), b) \neq a$?
- We define satisfiability of \boldsymbol{F} in terms of congruence closure over $\boldsymbol{S}_{\boldsymbol{F}}$.
- The formula \boldsymbol{F}

$$
F: s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_{n} \neq t_{n}
$$

is satisfiable iff the congruence closure \sim of $\boldsymbol{R}_{\boldsymbol{F}}$ satisfies $\boldsymbol{s}_{\boldsymbol{i}} \nsim \boldsymbol{t}_{\boldsymbol{i}}$ for each $i \in[m+1, n]$, where $R_{F}=\left\{\left(s_{i}, t_{i}\right) \mid 1 \leq i \leq m\right\}$.

Congruence Closure Algorithm

To decide the satisfiability of \boldsymbol{F}

$$
F: s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_{n} \neq t_{n}
$$

perform the following steps:
(1) Construct the congruence closure \sim of $\boldsymbol{R}_{\boldsymbol{F}}=\left\{s_{1}=t_{1}, \ldots, s_{m}=\boldsymbol{t}_{\boldsymbol{m}}\right\}$ over the subterm set $\boldsymbol{S}_{\boldsymbol{F}}$.
(2) If $s_{i} \sim t_{i}$ for any $i \in\{m+1, \ldots, n\}, F$ is unsatisfiable.
(3) Otherwise, \boldsymbol{F} is satisfiable.

Computing Congruence Closure

Constructing the congruence closure \sim of
$\boldsymbol{R}_{\boldsymbol{F}}=\left\{s_{1}=t_{1}, \ldots, s_{m}=t_{m}\right\}$ over the subterm set $\boldsymbol{S}_{\boldsymbol{F}}$ is done as follows:

- Initially, begin with the finest congruence relation \sim_{0} given by the partition:

$$
\left\{\{s\} \mid s \in S_{F}\right\}
$$

in which each term of $\boldsymbol{S}_{\boldsymbol{F}}$ is its own congruence class.

- For each $i \in\{1, \ldots, m\}$, impose $s_{i}=t_{i}$ by merging the congruence classes

$$
\left[s_{i}\right]_{\sim_{i-1}} \text { and }\left[t_{i}\right]_{\sim_{i-1}}
$$

to form a new congruence relation \sim_{i}. To accomplish this merging, first form the union of them and then propagate any new congruences that arise within this union.

Examples

- $f(a, b)=a \wedge f(f(a, b), b) \neq a$
- $f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge f(a) \neq a$
- $f(x)=f(y) \wedge x \neq y$

