
AAA528: Computational Logic

Lecture 7 — Program Verification (2)

Hakjoo Oh
2018 Fall

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 1 / 20

Total Correctness

Total correctness = Partial correctness + Termination

Total correctness of a function asserts that if the precondition holds
on entry, then the function eventually halts and the postcondition
holds.

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 2 / 20

Well-Founded Relations

Termination proof is based on well-founded relations.

A binary relation ≺ over a set S is well-founded iff there does not
exist an infinite sequence s1, s2, . . . of elements of S such that

s1 � s2 � · · · .

For example, the relation < is well-founded over the natural numbers,
because any sequence of natural numbers decreasing according to <
is finite: e.g.,

1023 > 39 > 30 > 29 > 8 > 3 > 0.

However, the relation < is not well-founded over the rationals or reals.

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 3 / 20

Lexicographic Relations

A useful class of well-founded relations.

From a set of pairs of sets and well-founded relations:

(S1,≺1), . . . , (Sm,≺m)

construct the set
S = S1 × · · · × Sm

and define the relation ≺:

(s1, . . . , sm) ≺ (t1, . . . , tm) ⇐⇒
m∨
i=1

(
si ≺i ti ∧

i−1∧
j=1

sj = tj
)

For example, let S = N3 and <3 be triples of natural numbers and
the natural lexicographic extension of < to such triples, respectively:

(11, 9, 104) <3 (11, 13, 3)

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 4 / 20

Proving Termination

Define a set S with a well-founded relation ≺.
I We usually choose as S the set of n-tuples of natural numbers and as
≺n the lexicographic extension <n

1 of <, where n varies according to
the application.

Find a ranking function δ mapping program states to S such that δ
decreases according to ≺ along every basic path.

Then, since ≺ is well-founded, there cannot exist an infinite sequence
of program states.

1When n = 2, (a, b) <2 (a′, b′) ⇐⇒ a < a′ ∨ (a = a′ ∧ b < b′)
Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 5 / 20

Example: Bubble Sort

For each loop, annotate a ranking function:

@pre : >
@post : >
bool BubbleSort (int a[]) {

int[] a := a0

@L1 : i + 1 ≥ 0
↓ (i + 1, i + 1)
for (int i := |a| − 1; i > 0; i := i− 1) {

@L2 : i + 1 ≥ 0 ∧ i− j ≥ 0
↓ (i + 1, i− j)
for (int j := 0; j < i; j := j + 1) {

if (a[j] > a[j + 1]) {
int t := a[j];
int a[j] := a[j + 1];
int a[j + 1] := t;

}
}

}
return a;

}

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 6 / 20

Basic Paths

Prove that the ranking functions decrease along each basic paths.

(1) @L1 : i+ 1 ≥ 0
↓ L1 : (i+ 1, i+ 1)
assume i > 0;
j := 0;
↓ L2 : (i+ 1, i− j)

(2) L2 : i+ 1 ≥ 0 ∧ i− j ≥ 0
↓ L2 : (i+ 1, i− j)
assume j < i;
assume a[j] > a[j + 1];
t := a[j];
a[j] := a[j + 1];
a[j + 1] := t;
j := j + 1;
↓ L2 : (i+ 1, i− j)

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 7 / 20

Basic Paths

(3) L2 : i+ 1 ≥ 0 ∧ i− j ≥ 0
↓ L2 : (i+ 1, i− j)
assume j < i;
assume a[j] ≤ a[j + 1];
j := j + 1;
↓ L2 : (i+ 1, i− j)

(4) L2 : i+ 1 ≥ 0 ∧ i− j ≥ 0
↓ L2 : (i+ 1, i− j)
assume j ≥ i;
i := i− 1;
↓ L1 : (i+ 1, i+ 1)

Other basic paths are not relevant to proving termination.

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 8 / 20

Verification Conditions

The verification condition of basic path

@F
↓ δ[x̄]
S1;
...
Sn;
↓ κ[x̄]

is
F → wp(κ ≺ δ[x̄0], S1; . . . ;Sn){x̄0 7→ x̄}

The value of κ after executing the statements is less than the value of δ
before executing the statements. The annotation F can provide extra
invariant to prove the relation.

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 9 / 20

Example

To derive the VC for the path

(4) L2 : i+ 1 ≥ 0 ∧ i− j ≥ 0
↓ L2 : (i+ 1, i− j)
assume j ≥ i;
i := i− 1;
↓ L1 : (i+ 1, i+ 1)

compute

wp((i+ 1, i+ 1) ≺2 (i0 + 1, i0 − j0), assume j ≥ i; i := i− 1)
⇐⇒ wp(((i0 − 1) + 1, (i0 − 1) + 1) <2 (i0 + 1, i0 − j0), assume j ≥ i)
⇐⇒ j ≥ i→ (i, i) <2 (i0 + 1, i0 − j0)

Then, replace the variables:

j ≥ i→ (i, i) <2 (i+ 1, i− j).

The VC:

i+ 1 ≥ 0 ∧ i− j ≥ 0 ∧ j ≥ i→ (i, i) <2 (i+ 1, i− j).

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 10 / 20

Exercise

Compute the verification conditions for the basic paths (1)–(3).

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 11 / 20

Example: Binary Search

@pre : u− l+ 1 ≥ 0
@post : >
↓ u− l+ 1
bool BinarySearch (int a[], int l, int u, int e) {

if (l > u) return false;
else {

int m := (l+ u) div 2;
if (a[m] = e) return true;
else if (a[m] < e) return BinarySearch (a,m+ 1, u, e)
else return BinarySearch (a, l,m− 1, e)

}
}

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 12 / 20

Basic Paths

(1) pre : u− l+ 1 ≥ 0
↓ u− l+ 1
assume l ≤ u;
m := (l+ u) div 2;
assume a[m] 6= e
assume a[m] < e
↓ u− (m+ 1) + 1

VC:

u−l+1 ≥ 0∧l ≤ u∧· · · → u−(((l+u) div 2)+1)+1 < u−l+1

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 13 / 20

Basic Paths

(2) pre : u− l+ 1 ≥ 0
assume l ≤ u;
m := (l+ u) div 2;
assume a[m] 6= e
assume a[m] ≥ e
↓ (m− 1)− l+ 1

VC:

u− l+1 ≥ 0∧ l ≤ u∧· · · → (((l+u) div 2)−1)− l+1 < u− l+1

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 14 / 20

Example: QuickSort

Prove that QuickSort returns a sorted array and always halts.

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 15 / 20

QuickSort

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 16 / 20

Function Specification

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 17 / 20

Termination Argument

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 18 / 20

Exercise 1: Absolute Value

Prove the partial correctness of the function:

That is, annotate the function; list basic paths and verification conditions;
and argue that the VC’s are valid.

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 19 / 20

Exercise 2: Insertion Sort

Prove the partial correctness of the function:

That is, annotate the function; list basic paths and verification conditions;
and argue that the VC’s are valid.

Hakjoo Oh AAA528 2018 Fall, Lecture 7 October 26, 2018 20 / 20

