AAA528: Computational Logic

Lecture 5 — DPLL(T)

Hakjoo Oh
2018 Fall

Hakjoo Oh AAA528 2018 Fall, Lecture 5

October 5, 2018

1/9



Deciding T'-Satisfiability
e Equality

(acl:w2Vm1:m3)/\(a:1:a:2Vw1=ac4)/\
T1 £ X2 NT1 £ T3 NT1 F Ty

@ Linear arithmetic
(331 + 2x3 < 5) \Y —|($3 < 1) N (acl > 3)

o Arrays
(i =3 Aaljl =1) A=(ali] =1)

Hakjoo Oh AAA528 2018 Fall, Lecture 5 October 5, 2018

2/9



DPLL(T)

@ Generalization of CDCL to decidable quantifier-free first-order theories

@ Based on an interplay between a CDCL SAT solver and a decision
procedure DPr for the conjunctive fragment of T

@ Implemented in most Satisfiability Module Theory (SMT) solvers

Hakjoo Oh AAA528 2018 Fall, Lecture 5 October 5, 2018 3/9



Theory Solver (DPr)

@ A theory solver DPr accepts conjunctive quantifier-free 3-formulas,
where conjunctive 3-formulas are conjunctions of X-literals.

@ This does not restrict the scope of the decision procedures. For
arbitrary quantifier-free X-formula F', we can convert it to DNF:

FiVFyV---V Fg.

F' is T-satisfiable iff at least one Fj is T-satisfiable. E.g.,

(z1 =
(1 =
(z1 =
(1 =

To N\ 1
T2 N\ T1
T3 N\ L1
T3 N\ T1

:.’132/\5(:175.’132/\.’131#.’133/\58175:1:4)V
:$4/\321?ém2/\$1#$3/\32175$4)\/
::132/\501¢CC2/\:131¢.’133/\:131¢:134)V
2134/\2131?5{132/\931351‘3/\2131#&34)

@ This method misses any opportunity for learning, as each clause is
solved independently, e.g., £1 = a3 A 1 # T2.

@ A better approach is to leverage the learning capabilities of SAT and
combine it with DP.

Hakjoo Oh AAA528 2018 Fall, Lecture 5 October 5, 2018

4/9



DPr for Equality Theory

A literal is either equality or inequality.
Given a conjunction of T-literals ¢, build an undirected graph
G(N,E—,E.).

> V is the set of variables in ¢.

> (:131, :EQ) € E_ iff (331 = mz) € ¢

> (z1,22) € Ex iff (£1 # x2) €0
® ¢ is unsatisfiable iff there exists an edge (x1,x2) € Ex such that
a9 is reachable from x; through a sequence of E_ edges.

o Example:
T1 £ o Ao = T3 AN X1 = T3

Hakjoo Oh AAA528 2018 Fall, Lecture 5 October 5, 2018 5/9



Overview of DPLL(T)

o Let at(¢) be the set of 3-atoms in a given NNF formula ¢.
@ Assuming some order, let at;(¢) be the i-th distinct atom in ¢.

e Given an atom a, let e(a) be the unique boolean variable associated
with a (called boolean encoder of a). Given a 3-formula ¢, let e(t)
be the boolean formula where each atom is replaced by e(a).

e For example, if x = y is a X-atom, then e(xz = y) denotes its
encoder (boolean variable) and when ¢ :=x =y VvV & = z,

e(¢p) :=e(x =y) Ve(r = z).
o e(¢) is called the propositional skeleton of ¢.

Hakjoo Oh AAA528 2018 Fall, Lecture 5 October 5, 2018 6/9



Overview of DPLL(T)

Example: p :=z=yA(y=2zA(x=2)) Ve =2z).
The propositional skeleton:

e(¢) 1= e(x = y) A ((e(y = 2) A —e(z = 2)) V e(z = 2))

Let B be a boolean formula initially set to e(¢).

Next, we check the satisfiability of B using a SAT solver. A satisfying assignment

a:= {e(x = y) —> true,e(y = z) > true, e(xz = z) —> false}
This does not mean that ¢ is satisfiable. We need to check the conjunction:
Th(a) =z =y Ay =2zA~(x=2z)
Th(c) is not satisfiable. We conjoin B with
e(~Th(a)) := (—e(xz =y) V —e(y = z) Ve(z = z))

which is called a blocking clause or lemma.

The SAT solver is invoked again and suggests another assignment:

a’ := {e(x = y) — true,e(y = z) — true, e(x = z) — true}

The corresponding Th(a') i=x =y Ay =z Ax = z is satisfiable, so ¢ is.

Hakjoo Oh AAA528 2018 Fall, Lecture 5 October 5, 2018

7/0



Theory Propagation

@ An improvement to the procedure.

@ Invoke DPr after some or all partial assignments, rather than
waiting for a full assignment.

@ When the partial assignment is not contradictory, propagate
implications due to the theory T' back to the SAT solver.

o Consider the partial assignment:

a:= {e(x = y) — true,e(y = z) — true}
and the corresponding formula fed to DP:
Th(a) =z =y Ay = z.

@ DPr infers that & = z and informs the SAT solver that
e(x = z) — true is implied by the partial assignment.

@ In addition to BCP, we now has theory propagation (TP). TP may
lead to further BCP, which means that (BCP,TP) may iterate several
times.

Hakjoo Oh AAA528 2018 Fall, Lecture 5 October 5, 2018 8/9



DPLL(T)

2
3
4.
5.
6
7
8

9.
10.
11.
12.
13.

Algorithm 11.2.3: DPLL(T)

Input: A formula ¢
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfi-

able” otherwise

1. function DPLL(T)

ADDCLAUSES(cenf (e(¥)));
if BCP() = “conflict” then return “Unsatisfiable”;
while (TRUE) do
if “DECIDE() then return “Satisfiable”; > Full assignment
repeat
while (BCP() = “conflict”) do
backtrack-level := ANALYZE-CONFLICT();
if backtrack-level < 0 then return “Unsatisfiable”;
else BackTrack(backtrack-level);
(t,res):=DEDUCTION(Th(cv));
ADDCLAUSES(e(t));
until ¢{ = TRUE

Hakjoo Oh AAA528 2018 Fall, Lecture 5

October 5, 2018

9/9



