AAA528: Computational Logic

Lecture 5 - DPLL(T)

Hakjoo Oh
2018 Fall

Deciding \boldsymbol{T}-Satisfiability

- Equality

$$
\begin{gathered}
\left(x_{1}=x_{2} \vee x_{1}=x_{3}\right) \wedge\left(x_{1}=x_{2} \vee x_{1}=x_{4}\right) \wedge \\
x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge x_{1} \neq x_{4}
\end{gathered}
$$

- Linear arithmetic

$$
\left(x_{1}+2 x_{3}<5\right) \vee \neg\left(x_{3} \leq 1\right) \wedge\left(x_{1} \geq 3\right)
$$

- Arrays

$$
(i=j \wedge a[j]=1) \wedge \neg(a[i]=1)
$$

DPLL(T)

- Generalization of CDCL to decidable quantifier-free first-order theories
- Based on an interplay between a CDCL SAT solver and a decision procedure $\boldsymbol{D} \boldsymbol{P}_{\boldsymbol{T}}$ for the conjunctive fragment of \boldsymbol{T}
- Implemented in most Satisfiability Module Theory (SMT) solvers

Theory Solver $\left(\boldsymbol{D} \boldsymbol{P}_{\boldsymbol{T}}\right)$

- A theory solver $\boldsymbol{D} \boldsymbol{P}_{\boldsymbol{T}}$ accepts conjunctive quantifier-free $\boldsymbol{\Sigma}$-formulas, where conjunctive $\boldsymbol{\Sigma}$-formulas are conjunctions of $\boldsymbol{\Sigma}$-literals.
- This does not restrict the scope of the decision procedures. For arbitrary quantifier-free $\boldsymbol{\Sigma}$-formula \boldsymbol{F}, we can convert it to DNF:

$$
\boldsymbol{F}_{1} \vee \boldsymbol{F}_{2} \vee \cdots \vee \boldsymbol{F}_{k}
$$

\boldsymbol{F} is \boldsymbol{T}-satisfiable iff at least one $\boldsymbol{F}_{\boldsymbol{i}}$ is \boldsymbol{T}-satisfiable. E.g.,

$$
\begin{aligned}
& \left(x_{1}=x_{2} \wedge x_{1}=x_{2} \wedge x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge x_{1} \neq x_{4}\right) \vee \\
& \left(x_{1}=x_{2} \wedge x_{1}=x_{4} \wedge x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge x_{1} \neq x_{4}\right) \vee \\
& \left(x_{1}=x_{3} \wedge x_{1}=x_{2} \wedge x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge x_{1} \neq x_{4}\right) \vee \\
& \left(x_{1}=x_{3} \wedge x_{1}=x_{4} \wedge x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge x_{1} \neq x_{4}\right)
\end{aligned}
$$

- This method misses any opportunity for learning, as each clause is solved independently, e.g., $x_{1}=x_{2} \wedge x_{1} \neq x_{2}$.
- A better approach is to leverage the learning capabilities of SAT and combine it with $\boldsymbol{D P} \boldsymbol{T}_{\boldsymbol{T}}$.

$\boldsymbol{D} \boldsymbol{P}_{T}$ for Equality Theory

- A literal is either equality or inequality.
- Given a conjunction of \boldsymbol{T}-literals ϕ, build an undirected graph $G\left(N, E_{=}, E_{\neq}\right)$.
- \boldsymbol{V} is the set of variables in ϕ.
- $\left(x_{1}, x_{2}\right) \in E=$ iff $\left(x_{1}=x_{2}\right) \in \phi$
- $\left(x_{1}, x_{2}\right) \in E_{\neq}$iff $\left(x_{1} \neq x_{2}\right) \in \phi$
- ϕ is unsatisfiable iff there exists an edge $\left(\boldsymbol{x}_{\boldsymbol{1}}, \boldsymbol{x}_{\mathbf{2}}\right) \in \boldsymbol{E}_{\neq}$such that \boldsymbol{x}_{2} is reachable from \boldsymbol{x}_{1} through a sequence of $\boldsymbol{E}_{=}$edges.
- Example:

$$
x_{1} \neq x_{2} \wedge x_{2}=x_{3} \wedge x_{1}=x_{3}
$$

Overview of DPLL(T)

- Let $\boldsymbol{a t}(\phi)$ be the set of $\boldsymbol{\Sigma}$-atoms in a given NNF formula ϕ.
- Assuming some order, let $\boldsymbol{a} \boldsymbol{t}_{\boldsymbol{i}}(\boldsymbol{\phi})$ be the \boldsymbol{i}-th distinct atom in ϕ.
- Given an atom \boldsymbol{a}, let $\boldsymbol{e}(\boldsymbol{a})$ be the unique boolean variable associated with \boldsymbol{a} (called boolean encoder of \boldsymbol{a}). Given a $\boldsymbol{\Sigma}$-formula \boldsymbol{t}, let $\boldsymbol{e}(\boldsymbol{t})$ be the boolean formula where each atom is replaced by $\boldsymbol{e}(\boldsymbol{a})$.
- For example, if $\boldsymbol{x}=\boldsymbol{y}$ is a $\boldsymbol{\Sigma}$-atom, then $\boldsymbol{e}(\boldsymbol{x}=\boldsymbol{y})$ denotes its encoder (boolean variable) and when $\phi:=\boldsymbol{x}=\boldsymbol{y} \vee \boldsymbol{x}=\boldsymbol{z}$, $e(\phi):=e(x=y) \vee e(x=z)$.
- $e(\phi)$ is called the propositional skeleton of ϕ.

Overview of DPLL(T)

- Example: $\phi:=x=y \wedge((y=z \wedge \neg(x=z)) \vee x=z)$.
- The propositional skeleton:

$$
e(\phi):=e(x=y) \wedge((e(y=z) \wedge \neg e(x=z)) \vee e(x=z))
$$

- Let B be a boolean formula initially set to $e(\phi)$.
- Next, we check the satisfiability of \boldsymbol{B} using a SAT solver. A satisfying assignment

$$
\alpha:=\{e(x=y) \mapsto \text { true, } e(y=z) \mapsto \text { true }, e(x=z) \mapsto \text { false }\}
$$

- This does not mean that ϕ is satisfiable. We need to check the conjunction:

$$
\hat{\operatorname{Th}}(\alpha):=x=y \wedge y=z \wedge \neg(x=z)
$$

- $\hat{T} h(\alpha)$ is not satisfiable. We conjoin B with

$$
e(\neg \hat{T} h(\alpha)):=(\neg e(x=y) \vee \neg e(y=z) \vee e(x=z))
$$

which is called a blocking clause or lemma.

- The SAT solver is invoked again and suggests another assignment:

$$
\alpha^{\prime}:=\{e(x=y) \mapsto \text { true, } e(y=z) \mapsto \operatorname{true}, e(x=z) \mapsto \text { true }\}
$$

- The corresponding $\hat{\operatorname{T}} h\left(\alpha^{\prime}\right):=x=y \wedge y=z \wedge x=z$ is satisfiable, so ϕ is.

Theory Propagation

- An improvement to the procedure.
- Invoke $\boldsymbol{D} \boldsymbol{P}_{\boldsymbol{T}}$ after some or all partial assignments, rather than waiting for a full assignment.
- When the partial assignment is not contradictory, propagate implications due to the theory \boldsymbol{T} back to the SAT solver.
- Consider the partial assignment:

$$
\alpha:=\{e(x=y) \mapsto \text { true, } e(y=z) \mapsto \text { true }\}
$$

and the corresponding formula fed to $\boldsymbol{D} \boldsymbol{P}_{\boldsymbol{T}}$:

$$
\hat{T h}(\alpha):=x=y \wedge y=z
$$

- $\boldsymbol{D} \boldsymbol{P}_{\boldsymbol{T}}$ infers that $\boldsymbol{x}=\boldsymbol{z}$ and informs the SAT solver that $e(x=z) \mapsto$ true is implied by the partial assignment.
- In addition to BCP, we now has theory propagation (TP). TP may lead to further BCP, which means that (BCP,TP) may iterate several times.

DPLL(T)

```
Algorithm 11.2.3: \(\operatorname{DPLL}(T)\)
Input: A formula \(\varphi\)
Output: "Satisfiable" if the formula is satisfiable and "Unsatisfi-
        able" otherwise
    1. function DPLL \((T)\)
    2. \(\operatorname{AddClauses}(\operatorname{cnf}(e(\varphi)))\);
    3. if BCP()\(=\) "conflict" then return "Unsatisfiable";
    4. while (TRUE) do
    5. if \(\neg \operatorname{DECIDE}()\) then return "Satisfiable"; \(\triangleright\) Full assignment
6. repeat
7. while \((\mathrm{BCP}()=\) "conflict") do
8. backtrack-level \(:=\) AnAlyZe-Conflict();
9. if backtrack-level < 0 then return "Unsatisfiable";
10. else BackTrack(backtrack-level);
11. \(\langle t, r e s\rangle:=\operatorname{DEDUCTION}(\hat{T h}(\alpha))\);
12. \(\operatorname{AddClauses}(e(t))\);
13. until \(t \equiv\) TRUE
```

