AAA528: Computational Logic Lecture 5 — DPLL(T)

Hakjoo Oh 2018 Fall

Deciding T-Satisfiability

Equality

$$(x_1=x_2 \lor x_1=x_3) \land (x_1=x_2 \lor x_1=x_4) \land \ x_1
eq x_2 \land x_1
eq x_3 \land x_1
eq x_4$$

• Linear arithmetic

$$(x_1+2x_3<5) \lor
eg (x_3 \le 1) \land (x_1 \ge 3)$$

Arrays

$$(i=j \wedge a[j]=1) \wedge \neg (a[i]=1)$$

DPLL(T)

- Generalization of CDCL to decidable quantifier-free first-order theories
- Based on an interplay between a CDCL SAT solver and a decision procedure DP_T for the conjunctive fragment of T
- Implemented in most Satisfiability Module Theory (SMT) solvers

Theory Solver (DP_T)

- A theory solver DP_T accepts conjunctive quantifier-free Σ -formulas, where conjunctive Σ -formulas are conjunctions of Σ -literals.
- This does not restrict the scope of the decision procedures. For arbitrary quantifier-free Σ-formula F, we can convert it to DNF:

$$F_1 \lor F_2 \lor \cdots \lor F_k.$$

F is T-satisfiable iff at least one F_i is T-satisfiable. E.g.,

$$(x_1 = x_2 \land x_1 = x_2 \land x_1 \neq x_2 \land x_1 \neq x_3 \land x_1 \neq x_4) \lor (x_1 = x_2 \land x_1 = x_4 \land x_1 \neq x_2 \land x_1 \neq x_3 \land x_1 \neq x_4) \lor (x_1 = x_3 \land x_1 = x_2 \land x_1 \neq x_2 \land x_1 \neq x_3 \land x_1 \neq x_4) \lor (x_1 = x_3 \land x_1 = x_4 \land x_1 \neq x_2 \land x_1 \neq x_3 \land x_1 \neq x_4)$$

- This method misses any opportunity for learning, as each clause is solved independently, e.g., x₁ = x₂ ∧ x₁ ≠ x₂.
- A better approach is to leverage the learning capabilities of SAT and combine it with DP_T .

DP_T for Equality Theory

- A literal is either equality or inequality.
- Given a conjunction of T-literals ϕ , build an undirected graph $G(N, E_{=}, E_{\neq})$.
 - V is the set of variables in φ.
 - $(x_1, x_2) \in E_=$ iff $(x_1 = x_2) \in \phi$
 - $(x_1, x_2) \in E_{
 eq}$ iff $(x_1 \neq x_2) \in \phi$
- ϕ is unsatisfiable iff there exists an edge $(x_1, x_2) \in E_{\neq}$ such that x_2 is reachable from x_1 through a sequence of E_{\pm} edges.

• Example:

$$x_1
eq x_2\wedge x_2=x_3\wedge x_1=x_3$$

Overview of DPLL(T)

- Let $at(\phi)$ be the set of Σ -atoms in a given NNF formula ϕ .
- Assuming some order, let $at_i(\phi)$ be the *i*-th distinct atom in ϕ .
- Given an atom a, let e(a) be the unique boolean variable associated with a (called boolean encoder of a). Given a Σ -formula t, let e(t)be the boolean formula where each atom is replaced by e(a).
- For example, if x = y is a Σ -atom, then e(x = y) denotes its encoder (boolean variable) and when $\phi := x = y \lor x = z$, $e(\phi) := e(x = y) \lor e(x = z)$.
- $e(\phi)$ is called the propositional skeleton of ϕ .

Overview of DPLL(T)

- Example: $\phi := x = y \land ((y = z \land \neg (x = z)) \lor x = z).$
- The propositional skeleton:

$$e(\phi):=e(x=y)\wedge ((e(y=z)\wedge
eg e(x=z)) \lor e(x=z))$$

- Let B be a boolean formula initially set to $e(\phi)$.
- ${f \bullet}\,$ Next, we check the satisfiability of ${\cal B}$ using a SAT solver. A satisfying assignment

$$\alpha := \{e(x = y) \mapsto \mathsf{true}, e(y = z) \mapsto \mathsf{true}, e(x = z) \mapsto \mathsf{false}\}$$

• This does not mean that ϕ is satisfiable. We need to check the conjunction:

$$\hat{Th}(lpha):=x=y\wedge y=z\wedge
eg(x=z)$$

• $\hat{Th}(\alpha)$ is not satisfiable. We conjoin B with

$$e(\neg \hat{Th}(\alpha)) := (\neg e(x = y) \lor \neg e(y = z) \lor e(x = z))$$

which is called a blocking clause or lemma.

• The SAT solver is invoked again and suggests another assignment:

$$lpha':=\{e(x=y)\mapsto {\sf true}, e(y=z)\mapsto {\sf true}, e(x=z)\mapsto {\sf true}\}$$

• The corresponding $\hat{Th}(lpha'):=x=y\wedge y=z\wedge x=z$ is satisfiable, so ϕ is.

Theory Propagation

- An improvement to the procedure.
- Invoke DP_T after some or all partial assignments, rather than waiting for a full assignment.
- When the partial assignment is not contradictory, propagate implications due to the theory *T* back to the SAT solver.
- Consider the partial assignment:

$$\alpha := \{e(x=y) \mapsto \mathsf{true}, e(y=z) \mapsto \mathsf{true}\}$$

and the corresponding formula fed to DP_T :

$$\hat{Th}(lpha):=x=y\wedge y=z.$$

- DP_T infers that x = z and informs the SAT solver that $e(x = z) \mapsto$ true is implied by the partial assignment.
- In addition to BCP, we now has theory propagation (TP). TP may lead to further BCP, which means that (BCP,TP) may iterate several times.

DPLL(T)

```
Algorithm 11.2.3: DPLL(T)
Input: A formula \varphi
Output: "Satisfiable" if the formula is satisfiable and "Unsatisfi-
          able" otherwise
 1. function DPLL(T)
       ADDCLAUSES(cnf(e(\varphi)));
 2.
       if BCP() = "conflict" then return "Unsatisfiable";
 3.
       while (TRUE) do
 4.
 5.
           if \neg DECIDE() then return "Satisfiable"; \triangleright Full assignment
 6.
           repeat
              while (BCP() = "conflict") do
 7.
                  backtrack-level := ANALYZE-CONFLICT();
 8.
 9.
                  if backtrack-level < 0 then return "Unsatisfiable":
                  else BackTrack(backtrack-level);
10.
              \langle t, res \rangle:=DEDUCTION(\hat{Th}(\alpha));
11.
              ADDCLAUSES(e(t));
12.
           until t \equiv \text{TRUE}
13.
```