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Review: First-Order Logic

FOL is an extension of PL with quantifiers and nonlogical symbols. A
first-order logic formula consists of

I variables,
I logical symbol (boolean connectives and quantifiers), and
I nonlogical symbols (function, predicate, and constant symbols).

The semantics is determined by an interpretation. An interpretation
consists of a domain (D) and an assignment (I) for free variables
and nonlogical symbols.

I For example, ∃x.x + 0 = 1 is true under the conventional
interpretation but it is false if we choose to interpret + as
multiplication.

Hakjoo Oh AAA528 2018 Fall, Lecture 4 October 8, 2018 2 / 32



First-Order Theories

In practice, we are not interested in pure logical validity (i.e. valid in
all interpretations) of FOL formulas but in validity in a specific class
of interpretations.

I E.g. ∃x.x + 0 = 1

First-order logic is rather a general framework for building a specific,
restricted logic, which provides a generic syntax and building blocks
for defining the restrictions, called theories.

The restrictions are made on nonlogical symbols and interpretations.
For instance, in the theory of integers, only + and − are allowed for
function symbols with their conventional interpretations.

One natural way for restricting interpretations is to provide a set of
axioms; we only consider interpretations that satisfy the axioms.
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Example: The Theory of Equality

A theory with a fixed interpretation for =. For example, the formula must
be valid according to the conventional interpretation of =:

∀x, y, z. (((x = y) ∧ ¬(y = z)) =⇒ ¬(x = z)).

To fix this interpretation, it is sufficient to enforce the following axioms:

1 Reflexivity: ∀x. x = x

2 Symmetry: ∀x, y. x = y =⇒ y = x

3 Transitivity: ∀x, y, z. x = y ∧ y = z =⇒ x = z
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First-Order Theories

A first-order theory T is defined by the two components:

Signature: A set of nonlogical symbols. Given a signature Σ, a
Σ-formula is one whose nonlogical symbols are from Σ. Signature
restricts the syntax.

Axioms: A set of closed FOL formulas whose nonlogical symbols are
from Σ. Axioms restrict the interpretations.
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Terminologies

Given a first-order theory T , a Σ-formula ϕ is T -satisfiable if there
exists an interpretation that satisfies both the formula and the axioms.

Similarly, ϕ is T -valid if all interpretations that satisfy the axioms
also satisfy ϕ. We write

T � F

for T -validity of F .

A theory T is decidable if there exists a decision procedure for
checking T -validity: T � F is decidable for every Σ-formula F .

A theory T is consistent if there is at least one T -interpretation, i.e.,
an interpretation that satisfies the axioms of T : for every F ∈ A,

I � F

In a consistent theory T , there does not exist a Σ-formula F such
that T � F and T � ¬F .

A theory T is complete if for every closed Σ-formula F , T � F or
T � ¬F .
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Fragments of Theories

A theory restricts only the nonlogical symbols. Restrictions on the logical
symbols or the grammar are done by defining fragments of the logic. Two
popular fragments:

Quantifier-free fragment: the set of Σ-formulas without quantifiers.

Conjunctive fragment: the set of formulas where the only boolean
connective that is allowed is conjunction.

Many first-order theories are undecidable while their quantifier-free
fragments are decidable. In practice, we are mostly interested in the
satisfiability problem of the quantifier-free fragment of first-order theories.
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First-Order Theories for Programs

First-order theories useful for reasoning about programs:

Equality

Integers, rationals, and reals

Lists, arrays

Pointers

Bit-vectors

...
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Theory of Equality (with Uninterpreted Functions)

The theory of equality TE is the simplest and most widely-used first-order
theory. Its signature

ΣE : {=, a, b, c, . . . , f, g, h, . . . , p, q, r, . . .}

consists of

= (equality), a binary predicate;

and all constant, function, and predicate symbols.

Equality = is an interpreted predicate symbol; its meaning will be defined
via the axioms. The others are uninterpreted since functions, predicates,
and constants are left unspecified.
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Theory of Equality (with Uninterpreted Functions)

The axioms of TE :

1 Reflexivity: ∀x. x = x

2 Symmetry: ∀x, y. x = y =⇒ y = x

3 Transitivity: ∀x, y, z. x = y ∧ y = z =⇒ x = z

4 Function congruence (consistency): for each positive integer n and
n-ary function symbol f ,

∀~x, ~y. (

n∧
i=1

xi = yi)→ f(~x) = f(~y).

5 Predicate congruence (consistency): for each positive integer n and
n-ary predicate symbol p,

∀~x, ~y. (

n∧
i=1

xi = yi)→ (p(~x)↔ p(~y)).

Hakjoo Oh AAA528 2018 Fall, Lecture 4 October 8, 2018 10 / 32



Example

To prove that

F : a = b ∧ b = c→ g(f(a), b) = g(f(c), a)

is TE-valid, assume otherwise to derive a contradiction:

1. I 2 F assumption
2. I � a = b ∧ b = c 1,→
3. I 2 g(f(a), b) = g(f(c), a) 1,→
4. I � a = b 2, ∧
5. I � b = c 2, ∧
6. I � a = c 4, 5, transitivity
7. I � f(a) = f(c) 6, function congruence
8. I � b = a 4, symmetry
9. I � g(f(a), b) = g(f(c), a) 7, 8, function congruence
10. I � ⊥ 3, 9
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Decidability

Like the full first-order logic, TE-validity is undecidable. However, there
exists an efficient decision procedure (see Chap. 9) for its quantifier-free
fragment.
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Uninterpreted Functions

In TE , function symbols are uninterpreted since the axioms do not
assign meaning to them other than in the context of equality. The
only thing we know about them is that they are functions (function
congruence).

Uninterpreted functions can also be used in other theories. For
example, in the formula

F (x) = F (G(y)) ∨ x + 1 = y,

F and G are uninterpreted.
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Use of Uninterpreted Functions

A main application of uninterpreted functions is to abstract complex
formulas that are otherwise difficult to automatically reason about.

In a formula F , treating a function symbol f as uninterpreted makes
the formula weaker; we ignore the semantics of f except for
congruence w.r.t. equality.

Let ϕUF be the formula derived from ϕ by replacing some
interpreted functions with uninterpreted ones. Then,

� ϕUF =⇒ � ϕ.

while the converse is not true.

ϕUF is an approximation of ϕ such that if ϕUF is valid so is ϕ. But
ϕUF may fail to be valid though ϕ is.

Uninterpreted functions simplify proofs. Uninterpreted functions let us
reason about systems while ignoring the semantics of irrelevant parts.
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Example

Consider the task of proving that the two C functions behave the same:

int power3 (int in) {

int i, out;

out = in;

for (i=0; i<2; i++)

out = out * in;

return out;

}

int power3_new (int in) {

int out;

out = (in * in) * in;

return out;

}

We can prove the equivalence by transforming the programs into formulas

ϕa : out0 = in ∧ out1 = out0 ∗ in ∧ out2 = out1 ∗ in
ϕb : out = (in ∗ in) ∗ in

and proving the validity of the following formula:

ϕa ∧ ϕb → out2 = out
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Example

Deciding formula with multiplication is generally hard. Replacing the
multiplication symbol with uninterpreted functions can aid the problem:

ϕUF
a : out0 = in ∧ out1 = G(out0, in) ∧ out2 = G(out1, in)

ϕUF
b : out = G(G(in, in), in)

Check the validity of

ϕUF
a ∧ ϕUF

b → out2 = out

This abstract formula is valid and so is the original (concrete) formula.
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Theory of Peano Arithmetic (First-Order Arithmetic)

A theory for natural numbers. The theory of Peano arithmetic TPA has
signature

ΣPA : {0, 1,+, ·,=}

where

0 and 1 are constants;

+ (addition) and · (multiplication) are binary functions;

and = (equality) is a binary predicate.
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Theory of Peano Arithmetic

The axioms of TPA:

1 Zero: ∀x. ¬(x + 1 = 0)

2 Successor: ∀x, y. x + 1 = y + 1→ x = y

3 Plus zero: ∀x. x + 0 = x

4 Plus successor: ∀x, y. x + (y + 1) = (x + y) + 1

5 Times zero: ∀x. x · 0 = 0

6 Times successor: ∀x, y, z. (y + 1) = x · y + x

7 Induction: F [0] ∧ (∀x. F [x]→ F [x + 1])→ ∀x. F [x] (for every
ΣPA-formula F with one free variable)

Hakjoo Oh AAA528 2018 Fall, Lecture 4 October 8, 2018 18 / 32



Example Formulas

The formula 3x + 5 = 2y can be written as

(1 + 1 + 1) · x + 1 + 1 + 1 + 1 + 1 = (1 + 1) · y.

The inequality 3x + 5 > 2y can be expressed by

∃z. z 6= 0 ∧ 3x + 5 = 2y + z.

The weak inequality 3x + 5 ≥ 2y?

The ΣPA-formula

∃x, y, z. x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xx + yy = zz

is TPA-valid.

Every formula of the set

{∀x, y, z. x 6= 0∧ y 6= 0∧ z 6= 0→ xn + yn 6= zn | n > 2∧n ∈ Z}

is TPA-valid.
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Decidability and Completeness

TPA is neither complete nor decidable. Even undecidable is its
quantifier-free fragment. A fragment of TPA, called Presburger arithmetic,
is both complete and decidable.
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Theory of Presburger Arithmetic

A restriction that does not allow multiplication. The theory has signature

ΣN : {0, 1,+,=}

and axioms:

1 Zero: ∀x. ¬(x + 1 = 0)

2 Successor: ∀x, y. x + 1 = y + 1→ x = y

3 Plus zero: ∀x. x + 0 = x

4 Plus successor: ∀x, y. x + (y + 1) = (x + y) + 1

5 Induction: F [0] ∧ (∀x. F [x]→ F [x + 1])→ ∀x. F [x]
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Integers

Integer reasoning can be performed with natural-number reasoning:
formulas over all integers Z = {. . . ,−1, 0, 1, . . .} can be encoded
as ΣN-formulas.

Idea: replace integer variables by the difference of variables of
natural-numbers. For example, consider the formula

F0 : ∀w, x.∃y, z. x + 2y − z > −3w.

1 Introduce two variables, vp and vn, for each variable v of F0:

F1 : ∀wp, wn, xp, xn.∃yp, yn, zp, zn.
(xp − xn) + 2(yp − yn)− (zp − zn) > −3(wp − wn).

2 Move negated terms to the other side of the inequality:

F2 : ∀wp, wn, xp, xn.∃yp, yn, zp, zn.
xp + 2yp + zn + 3wp > xn + 2yn + zp + 3wn.

F2 is TN-valid precisely when F0 is valid in the integer interpretation.
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Theory of Integers

Although integer reasoning can be done with natural numbers, it is
convenient to have a theory of integers.

The theory of integers TZ (with linear arithmetic) has signatures

ΣZ : {. . . ,−2,−1, 0, 1, 2, . . . ,−3·,−2·, 2·, 3·, . . . ,+,−,=, >}

TZ is no more expressive but more convenient than Presburger
arithmetic.

TZ is both complete and decidable, and one of the most widely used
theory.
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Theories of Reals and Rationals

The theory of reals TR has signature

ΣR : {0, 1,+,−, ·,=,≥}

The theory of rationals TQ has signature

ΣQ : {0, 1,+,−,=,≥}

TR and TQ have complex axioms (see textbook).
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Comparison with Peano Arithmetic

TPA is more complicated than TR: TR is decidable while TPA is not.

Intuitively, TPA is more difficult to decide because it is easier to find a
solution in TR. Consider the formula

F : ∃x.2x = 7.

I In the theory of integers, F is invalid.
I In the theories of reals, x = 7/2.
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Theory of Lists

The theory of lists Tcons , has signature

Σcons : {cons, car, cdr, atom,=}

and axioms:

1 Reflexivity, symmetry, transitivity of TE

2 Instantiations of function congruence for cons, car, and cdr:
I ∀x1, x2, y1, y2. x1 = x2 ∧ y1 = y2 → cons(x1, y1) =

cons(x2, y2)
I ∀x, y. x = y → car(x) = car(y)
I ∀x, y. x = y → cdr(x) = cdr(y)

3 Instantiation of predicate congruence for atom:

∀x, y. x = y → (atom(x)↔ atom(y))

4 ∀x, y.car(cons(x, y)) = x, ∀x, y.cdr(cons(x, y)) = y

5 ∀x. ¬atom(x)→ cons(car(x), cdr(x)) = x

6 ∀x, y.¬atom(cons(x, y))
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Example

The (ΣE ∪ Σcons)-formula

F :
car(a) = car(b) ∧ cdr(a) = cdr(b) ∧ ¬atom(a) ∧ ¬atom(b)
→ f(a) = f(b)

is (ΣE ∪ Σcons)-valid:

1. I 2 F assumption
2. I � car(a) = car(b) 1,→,∧
3. I � cdr(b) = cdr(b) 1,→,∧
4. I � ¬atom(a) 1,→,∧
5. I � ¬atom(b) 1,→,∧
6. I 2 f(a) = f(b) 1,→
7. I � cons(car(a), cdr(a)) = cons(car(b), cdr(b)) 2, 3, congr.
8. I � cons(car(a), cdr(a)) = a 4, Axiom5
9. I � cons(car(b), cdr(b)) = a 5, Axiom5
10. I � a = b 7, 8, 9, trans.
11. I � f(a) = f(b) 10, congr.
12. I � ⊥ 6, 11
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Theory of Arrays

The theory of arrays TA has signature

ΣA : {·[·], ·〈·� ·〉,=}

where

a[i] (binary function) represents the value of array a at position i

a〈i � v〉 (ternary function) represents the modified array a in which
position i has value v

= is the equality predicate

The axioms of TA:

1 the axioms of reflexivity, symmetry, and transitivity of TE

2 (array congruence) ∀a, i, j. i = j → a[i] = a[j]

3 (read-over-write 1) ∀a, v, i, j. i = j → a〈i � v〉[j] = v

4 (read-over-write 2) ∀a, v, i, j. i 6= j → a〈i � v〉[j] = a[j]
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Example

The formula

F : a[i] = e→ ∀j. a〈i � e〉[j] = a[j]

is valid:

1. I 2 F assumption
2. I � a[i] = e 1,→
3. I 2 ∀j.a〈i � e〉[j] = a[j] 1,→
4. I1 : I � {j 7→ v} 2 a〈i � e〉[j] = a[j] 3, ∀, for some v ∈ D
5. I1 � a〈i � e〉[j] 6= a[j] 4,¬
6. I1 � i = j 5, read-over-wirte 2 (cntra)
7. I1 � a[i] = a[j] 6, array congruence
8. I1 � a〈i � e〉[j] = e 6, read-over-write 1
9. I1 � a〈i � e〉[j] = a[j] 2, 7, 8, transitivity
10. I1 � ⊥ 4, 9
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Example

The formula
F : a[i] = e→ a〈i � e〉 = a

is not TA-valid, since = is only defined for array elements. It becomes
valid with the following axiom, called extensionality:

∀a, b. (∀i. a[i] = b[i])↔ a = b

1. I 2 F assumption
2. I � a[i] = e 1,→
3. I 2 a〈i � e〉 = a 1,→
4. I � a〈i � e〉 6= a 3,¬
5. I � ¬(∀j. a〈i � e〉[j] = a[j]) 4, extensionality
6. I 2 ∀j. a〈i � e〉[j] = a[j] 5,¬

The remaining proof proceeds as in the previous example.
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Combining Theories

In practice, the formulas we check for satisfiability or validity span
multiple theories. For example, in program verification, we want to
prove properties about a list of integers or an array of integers.

Nelson and Oppen presented a general method for combining
quantifier-free fragments of first-order theories. Given T1 and T2 such
that Σ1 ∩ Σ2 = {=}, the combines theory T1 ∪ T2 has signature
Σ1 ∪ Σ2 and axioms A1 ∪A2. Nelson and Oppen showed that if

I satisfiability in the quantifier-free fragments of T1 is decidable
I satisfiability in the quantifier-free fragments of T2 is decidable
I and certain conditions are met

then satisfiability in the quantifier-free fragment of T1 ∪ T2 is
decidable. Furthermore, if the decision procedures for T1 and T2 are
in P (in NP), then the combined decision procedure for T1 ∪ T2 is in
P (in NP).

Hakjoo Oh AAA528 2018 Fall, Lecture 4 October 8, 2018 31 / 32



Summary

Decidability of first-order theories:

Theory Description Full QFF

TE equality no yes
TPA Peano arithmetic no no
TN Presburger arithmetic yes yes
TZ linear integers yes yes
TR reals (with ·) yes yes
TQ rationals (without ·) yes yes
TRDS recursive data structures no yes
TA arrays no yes
T=
A arrays with extensionality no yes
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