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First-Order Logic

An extension of propositional logic with predicates, functions, and
quantifiers.

First-order logic is also called predicate logic, first-order predicate
calculus, and relational logic.

First-order logic is expressive enough to reason about programs.

However, completely automated reasoning is not possible.
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Terms (Variables, Constants, and Functions)

Terms denote the objects that we are reasoning about.

While formulas in PL evaluate to true or false, terms in FOL evaluate
to values in an underlying domain such as integers, strings, lists, etc.

Terms in FOL are defined by the grammar:

t→ x | c | f(t1, . . . , fn)

I Basic terms are variables (x, y, z, . . . ) and constants (a, b, c, . . . ).
I Composite terms include n-ary functions applied to n terms, i.e.,
f(t1, . . . , tn), where tis are terms.

F A constant can be viewed as a 0-ary function.

Examples:
I f(a), a unary function f applied to a constant
I g(x, b), a binary function g applied to a variable x and a constant b
I f(g(x, f(b)))
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Predicates

The propositional variables of PL are generalized to predicates in
FOL, denoted p, q, r, . . . .

An n-ary predicate takes n terms as arguments.

A FOL propositional variable is a 0-ary predicate, denoted P,Q, . . .

Examples:
I P , a propositional variable (or 0-ary predicate)
I p(f(x), g(x, f(x))), a binary predicate applied to two terms
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Syntax

Atom: basic elements
I truth symbols ⊥ (“false”) and > (“true”)
I n-ary predicates applied to n terms

Literal: an atom α or its negation ¬α.

Formula: a literal or application of a logical connective to formulas,
or the application of a quantifier to a formula.

F → ⊥ | > | p(t1, . . . , tn) atom
| ¬F negation (”not”)
| F1 ∧ F2 conjunction (”and”)
| F1 ∨ F2 disjunction (”or”)
| F1 → F2 implication (”implies”)
| F1 ↔ F2 iff (”if and only if”)
| ∃x.F [x] existential quantification
| ∀x.F [x] universal quantification
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Notations on Quantification

In ∀x.F [x] and ∃x.F [x], x is the quantified variable and F [x] is
the scope of the quantifier. We say x is bound in F [x].

∀x.∀y.F [x, y] is often abbreviated by ∀x, y.F [x, y].

The scope of the quantified variable extends as far as possible: e.g.,

∀x.p(f(x), x)→ (∃y.p(f(g(x, y)), g(x, y))) ∧ q(x, f(x))

A variable is free in F [x] if it is not bound. free(F ) and bound(F )
denote the free and bound variables of F , respectively. A formula F
is closed if F has no free variables. E.g.,

∀x.p(f(x), y)→ ∀y.p(f(x), y)

If free(F ) = {x1, . . . , xn}, then its universal closure is
∀x1 . . . ∀xn.F and its existential closure is ∃x1 . . . ∃xn.F . They
are usually written ∀ ∗ .F and ∃ ∗ .F .
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Example FOL Formulas

Every dog has its day.

∀x.dog(x)→ ∃y.day(y) ∧ itsDay(x, y)

Some dogs have more days than others.

∃x, y.dog(x) ∧ dog(y) ∧#days(x) > #days(y)

The length of one side of a triangle is less than the sum of the lengths
of the other two sides.

∀x, y, z.triangle(x, y, z)→ length(x) < length(y)+length(z)

Fermat’s Last Theorem.

∀n.integer(n) ∧ n > 2
→ ∀x, y, z.
integer(x) ∧ integer(y) ∧ integer(z) ∧ x > 0 ∧ y > 0 ∧ z > 0
→ xn + yn 6= zn
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Interpretation

A FOL interpretation I : (DI , αI) is a pair of a domain and an
assignment.

DI is a nonempty set of values such as integers, real numbers, etc.

αI maps variables, constant, functions, and predicate symbols to
elements, functions, and predicates over DI .

I each variable x is assigned a value from DI

I each n-ary function symbol f is assigned an n-ary function
fI : Dn

I → DI .
I each n-ary predicate symbol p is assigned an n-ary predicate
pI : Dn

I → {true, false}.
Arbitrary terms and atoms are evaluated recursively:

αI [f(t1, . . . , fn)] = αI [f ](αI [t1], . . . , αI [tn])
αI [p(t1, . . . , fn)] = αI [p](αI [t1], . . . , αI [tn])
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Example

F : x+ y > z → y > z − x

Note +,−, > are just symbols: we could have written

p(f(x, y), z)→ p(y, g(z, x)).

Domain: DI = Z = {. . . ,−1, 0, 1, . . .}
Assignment:

αI = {+ 7→ +Z,− 7→ −Z, >7→>Z, x 7→ 13, y 7→ 42, z 7→ 1, . . .}
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Semantics of First-Order Logic

Given an interpretation I : (DI , αI), I � F or I 2 F .

I � >, I 2 ⊥,
I � p(t1, . . . , tn) iff αI [p(t1, . . . , tn)] = true
I � ¬F iff I 2 F
I � F1 ∧ F2 iff I � F1 and I � F2

I � F1 ∨ F2 iff I � F1 or I � F2

I � F1 → F2 iff I 2 F1 or I � F2

I � F1 ↔ F2 iff (I � F1 and I � F2) or (I 2 F1 and I 2 F2)
I � ∀x.F iff for all v ∈ DI , I � {x 7→ v} � F
I � ∃x.F iff there exists v ∈ DI , I � {x 7→ v} � F

where J : I � {x 7→ v} denotes an x-variant of I:

DJ = DI

αJ [y] = αI [y] for all constant, free variable, function, and predicate
symbols y, except that αJ(x) = v.
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Example

Consider the formula:

F : ∃x.f(x) = g(x)

and the interpretation I : (D : {v1, v2}, αI):

αI : {f(v1) 7→ v1, f(v2) 7→ v2, g(v1) 7→ v2, g(v2) 7→ v1}

Compute the truth value of F under I as follows:

1. I � {x 7→ v} 2 f(x) = g(x) for v ∈ D
2. I 2 ∃x.f(x) = g(x) since v ∈ D is arbitrary
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Satisfiability and Validity

A formula F is satisfiable iff there exists an interpretation I such that
I � F .

A formula F is valid iff for all interpretations I, I � F .

Technically, satisfiability and validity are defined for closed FOL
formulas. Convention for formulas with free variables:

I If we say that a formula F such that free(F ) 6= ∅ is valid, we mean
that its universal closure ∀ ∗ .F is valid.

I If we say that F is satisfiable, we mean that its existential closure
∃ ∗ .F is satisfiable.

I Duality still holds:

∀ ∗ .F is valid ⇐⇒ ∃ ∗ .¬F is unsatisfiable.
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Extension of the Semantic Argument Method

Most of the proof rules from PL carry over to FOL:

I � ¬F
I 2 F

I 2 ¬F
I � F

I � F ∧G
I � F, I � G

I 2 F ∧G
I 2 F | I 2 G

I � F ∨G
I � F | I � G

I 2 F ∨G
I 2 F, I 2 G

I � F → G
I 2 F | I � G

I 2 F → G
I � F, I 2 G

I � F ↔ G
I � F ∧G | I � ¬F ∧ ¬G

I 2 F ↔ G
I � F ∧ ¬G | I � ¬F ∧G
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Rules for Quantifiers

“Universal” rules:

Universal elimination I:

I � ∀x.F
I � {x 7→ v} � F

for any v ∈ DI

Existential elimination I:

I 2 ∃x.F
I � {x 7→ v} 2 F

for any v ∈ DI

There rules are usually applied using a domain element v that was
introduced earlier in the proof.
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Rules for Quantifiers

“Existential” rules:

Existential elimination II:

I � ∃x.F
I � {x 7→ v} � F

for a fresh v ∈ DI

Universal elimination II:

I 2 ∀x.F
I � {x 7→ v} 2 F

for a fresh v ∈ DI

When applying these rules, v must not have been previously used in the
proof.
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Contradiction Rule

A contradiction exists if two variants of the original interpretation I
disagree on the truth value of an n-ary predicate p for a given tuple of
domain values:

J : I � · · · � p(s1, . . . , sn)
K : I � · · · 2 p(t1, . . . , tn)

I � ⊥
for i ∈ {1, . . . , n}, αJ [si] = αK [ti]
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Example 1

Prove that the formula is valid:

F : (∀x.p(x))→ (∀y.p(y))

Suppose not; there is an interpretation I such that I 2 F .

1. I 2 F assumption
2. I � ∀x.p(x) 1 and→
3. I 2 ∀y.p(y) 1 and→
4. I � {y 7→ v} 2 p(y) 3 and ∀, for some v ∈ DI

5. I � {x 7→ v} � p(x) 2 and ∀
6. I � ⊥ 4 and 5
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Example 2

Prove that the formula is valid:

F : (∀x.p(x))↔ (¬∃x.¬p(x))

We need to show both of forward and backward directions.

F1 : (∀x.p(x))→ (¬∃x.¬p(x)), F2 : (∀x.p(x))← (¬∃x.¬p(x))

Suppose F1 is not valid; there is an interpretation I such that I 2 F1.

1. I � ∀x.p(x) assumption
2. I 2 ¬∃x.¬p(x) assumption
3. I � ∃x.¬p(x) 2 and ¬
4. I � {x 7→ v} � ¬p(x) 3 and ∃, for some v ∈ DI

5. I � {x 7→ v} � p(x) 1 and ∀
6. I � ⊥ 4 and 5

Exercise) Prove that F2 is valid.
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Example 3

Prove that the formula is valid:

F : p(a)→ ∃x.p(x).

Assume F is invalid and derive a contradiction:

1. I 6� F assumption
2. I � p(a) 1 and→
3. I 6� ∃x.p(x) 1 and→
4. I � {x 7→ αI [a]} 6� p(x) 3 and ∃
5. I � ⊥ 2, 4
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Example 4

Prove that the formula is invalid:

F : (∀x.p(x, x))→ (∃x.∀y.p(x, y))

It suffices to find an interpretation I such that I � ¬F . Choose
DI = {0, 1} and pI = {(0, 0), (1, 1)}. The interpretation falsifies F .
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Soundness and Completeness of FOL

A proof system is sound if every provable formula is valid. It is complete
if every valid formula is provable.

Theorem (Sound)

If every branch of a semantic argument proof of I 2 F closes, then F is
valid.

Theorem (Complete)

Each valid formula F has a semantic argument proof.
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Substitution

A substitution is a map from FOL formulas to FOL formulas:

σ : {F1 7→ G1, . . . , Fn 7→ Gn}

To compute Fσ, replace each occurrence of Fi in F by Gi

simultaneously.

For example, consider formula

F : (∀x.p(x, y))→ q(f(y), x)

and substitution

σ : {x 7→ g(x), y 7→ f(x), q(f(y), x) 7→ ∃x.h(x, y)}

Then,
Fσ : (∀x.p(g(x), f(x)))→ ∃x.h(x, y)
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Safe Substitution

A restricted application of substitution, which has a useful semantic
property.

Idea: Before applying substitution, replace bound variables to fresh
variables.

For example, consider formula

F : (∀x.p(x, y))→ q(f(y), x)

and substitution

σ : {x 7→ g(x), y 7→ f(x), q(f(y), x) 7→ ∃x.h(x, y)}

Then, safe substitution proceeds
1 Renaming: (∀x′.p(x′, y))→ q(f(y), x)
2 Substitution: (∀x′.p(x′, f(x)))→ ∃x.h(x, y)
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Safe Substitution

A FOL version of Substitution of Equivalent Formulas:

Theorem

Consider substitution

σ : {F1 7→ G1, . . . , Gn 7→ Gn}

such that for each i, Fi ⇐⇒ Gi. Then F ⇐⇒ Fσ when Fσ is
computed as a safe substitution.

A FOL version of Valid Templates:

Theorem

If H is a valid formula schema and σ is a substitution obeying H’s side
conditions, then Hσ is also valid.
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Examples on Valid Templates

Consider valid formula schema:

H : (∀x.F )↔ (¬∃x.¬F )

The formula

G : (∀x.∃y.q(x, y)↔ (¬∃x.¬∃y.q(x, y))

is valid because G = Hσ for σ : {F 7→ ∃y.q(x, y)}.
Consider valid formula schema:

H : (∀x.F )↔ F provided x 6∈ free(F )

The formula

G : (∀x.∃y.p(z, y))↔ ∃y.p(z, y)

is valid because G = Hσ for σ : {F 7→ ∃y.p(z, y)}.
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Negation Normal Form

A FOL formula F can be transformed into NNF by using the
following equivalences:

¬¬F1 ⇐⇒ F1

¬> ⇐⇒ ⊥
¬⊥ ⇐⇒ >

¬(F1 ∧ F2) ⇐⇒ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇐⇒ ¬F1 ∧ ¬F2

F1 → F2 ⇐⇒ ¬F1 ∨ F2

F1 ↔ F2 ⇐⇒ (F1 → F2) ∧ (F2 → F1)
¬∀x.F [x] ⇐⇒ ∃x.¬F [x]
¬∃x.F [x] ⇐⇒ ∀x.¬F [x]
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Example

Convert the formula into NNF:

G : ∀x.(∃y.p(x, y) ∧ p(x, z))→ ∃w.p(x,w)

1 Use the equivalence F1 → F2 ⇐⇒ ¬F1 ∨ F2:

∀x.¬(∃y.p(x, y) ∧ p(x, z)) ∨ ∃w.p(x,w)

2 Use the equivalence ¬∃x.F [x] ⇐⇒ ∀x.¬F [x]:

∀x.(∀y.¬(p(x, y) ∧ p(x, z))) ∨ ∃w.p(x,w)

3 Use De Morgan’s Law:

∀x.(∀y.¬p(x, y) ∨ ¬p(x, z)) ∨ ∃w.p(x,w)
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Prenex Normal Form (PNF)

A formula is in prenex normal form (PNF) if all of its quantifiers
appear at the beginning of the formula:

Q1x1. . . .Qnxn.F [x1, . . . , xn]

where Qi ∈ {∀, ∃} and F is quantifier-free.

Every FOL F has an equivalent PNF. To convert F into PNF,
1 Convert F into NNF: F1

2 Rename quantified variables to unique names: F2

3 Remove all quantifiers from F2: F3

4 Add the quantifiers before F3:

F4 : Q1x1. . . .Qnxn.F3

where Qi are the quantifiers such that if Qj is in the scope of Qi in
F1, then i < j.

A FOL formula is in CNF (DNF) if it is in PNF and its main
quantifier-free subformula is in CNF (DNF).
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Example

F : ∀x.¬(∃y.p(x, y) ∧ p(x, z)) ∨ ∃y.p(x, y)

1 Conversion to NNF:

F1 : ∀x.(∀y.¬p(x, y) ∨ ¬p(x, z)) ∨ ∃y.p(x, y)

2 Rename quantified variables:

F2 : ∀x.(∀y.¬p(x, y) ∨ ¬p(x, z)) ∨ ∃w.p(x,w)

3 Remove all quantifiers:

F3 : ¬p(x, y) ∨ ¬p(x, z) ∨ p(x,w)

4 Add the quantifiers before F3:

F4 : ∀x.∀y.∃w.¬p(x, y) ∨ ¬p(x, z) ∨ p(x,w)

Note that ∀x.∃w.∀y.F3 is okay, but ∀y.∃w.∀x.F3 is not.
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Decidability

Satisfiability can be formalized as a decision problem in formal
languages.

Ex) Let LPL be the set of all satisfiable formulas. Given w, is
w ∈ LPL?

A formal language L is decidable if there exists a procedure that,
given a word w, (1) eventually halts and (2) answer yes if w ∈ L and
no if w 6∈ L. Otherwise, L is undecidable.

LPL is decidable but LFOL is not.
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Summary

Syntax and semantics of first-order logic

Satisfiability and validity

Substitution, Normal forms
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