AAA528: Computational Logic Lecture 3 — First-Order Logic

Hakjoo Oh 2018 Fall

First-Order Logic

- An extension of propositional logic with predicates, functions, and quantifiers.
- First-order logic is also called predicate logic, first-order predicate calculus, and relational logic.
- First-order logic is expressive enough to reason about programs.
- However, completely automated reasoning is not possible.

Terms (Variables, Constants, and Functions)

- Terms denote the objects that we are reasoning about.
- While formulas in PL evaluate to true or false, terms in FOL evaluate to values in an underlying domain such as integers, strings, lists, etc.
- Terms in FOL are defined by the grammar:

$$t \to x \mid c \mid f(t_1, \ldots, f_n)$$

- Basic terms are variables (x, y, z, ...) and constants (a, b, c, ...).
- Composite terms include *n*-ary **functions** applied to *n* terms, i.e., $f(t_1, \ldots, t_n)$, where t_i s are terms.
 - $\star\,$ A constant can be viewed as a 0-ary function.
- Examples:
 - f(a), a unary function f applied to a constant
 - g(x,b), a binary function g applied to a variable x and a constant b
 - f(g(x, f(b)))

Predicates

- The propositional variables of PL are generalized to **predicates** in FOL, denoted *p*, *q*, *r*,
- An *n*-ary predicate takes *n* terms as arguments.
- A FOL propositional variable is a 0-ary predicate, denoted P,Q,\ldots
- Examples:
 - ▶ *P*, a propositional variable (or 0-ary predicate)
 - p(f(x), g(x, f(x))), a binary predicate applied to two terms

Syntax

- Atom: basic elements
 - truth symbols \perp ("false") and \top ("true")
 - *n*-ary predicates applied to *n* terms
- Literal: an atom α or its negation $\neg \alpha$.
- **Formula**: a literal or application of a logical connective to formulas, or the application of a quantifier to a formula.

$$\begin{array}{lll} F & \rightarrow & \perp \mid \top \mid p(t_1, \dots, t_n) & \text{ atom} \\ & \mid & \neg F & \text{ negation (" not")} \\ & \mid & F_1 \wedge F_2 & \text{ conjunction (" and")} \\ & \mid & F_1 \vee F_2 & \text{ disjunction (" or")} \\ & \mid & F_1 \rightarrow F_2 & \text{ implication (" implies")} \\ & \mid & F_1 \leftrightarrow F_2 & \text{ iff (" if and only if')} \\ & \mid & \exists x.F[x] & \text{ existential quantification} \\ & \mid & \forall x.F[x] & \text{ universal quantification} \end{array}$$

Notations on Quantification

- In $\forall x.F[x]$ and $\exists x.F[x]$, x is the quantified variable and F[x] is the scope of the quantifier. We say x is bound in F[x].
- $\forall x. \forall y. F[x, y]$ is often abbreviated by $\forall x, y. F[x, y]$.
- The scope of the quantified variable extends as far as possible: e.g.,

 $\forall x.p(f(x),x) \rightarrow (\exists y.p(f(g(x,y)),g(x,y))) \land q(x,f(x))$

• A variable is **free** in F[x] if it is not bound. **free**(F) and **bound**(F) denote the free and bound variables of F, respectively. A formula F is **closed** if F has no free variables. E.g.,

$$\forall x.p(f(x),y) \rightarrow \forall y.p(f(x),y)$$

• If $free(F) = \{x_1, \ldots, x_n\}$, then its universal closure is $\forall x_1 \ldots \forall x_n . F$ and its existential closure is $\exists x_1 \ldots \exists x_n . F$. They are usually written $\forall * . F$ and $\exists * . F$.

Example FOL Formulas

• Every dog has its day.

 $orall x.dog(x)
ightarrow \exists y.day(y) \land itsDay(x,y)$

• Some dogs have more days than others.

 $\exists x, y. dog(x) \land dog(y) \land \# days(x) > \# days(y)$

• The length of one side of a triangle is less than the sum of the lengths of the other two sides.

 $\forall x, y, z. triangle(x, y, z) \rightarrow length(x) < length(y) + length(z)$

• Fermat's Last Theorem.

$$egin{aligned} &orall n.integer(n) \wedge n > 2 \ & o orall x, y, z. \ & integer(x) \wedge integer(y) \wedge integer(z) \wedge x > 0 \wedge y > 0 \wedge z > 0 \ & o x^n + y^n
eq z^n \end{aligned}$$

Interpretation

A FOL interpretation $I:(D_I, \alpha_I)$ is a pair of a domain and an assignment.

- D_I is a nonempty set of values such as integers, real numbers, etc.
- α_I maps variables, constant, functions, and predicate symbols to elements, functions, and predicates over D_I .
 - \blacktriangleright each variable x is assigned a value from D_I
 - each n-ary function symbol f is assigned an n-ary function $f_I: D_I^n o D_I.$
 - each *n*-ary predicate symbol p is assigned an *n*-ary predicate $p_I: D_I^n \rightarrow \{$ true, false $\}$.
- Arbitrary terms and atoms are evaluated recursively:

$$\begin{array}{lll} \alpha_I[f(t_1,\ldots,f_n)] &=& \alpha_I[f](\alpha_I[t_1],\ldots,\alpha_I[t_n]) \\ \alpha_I[p(t_1,\ldots,f_n)] &=& \alpha_I[p](\alpha_I[t_1],\ldots,\alpha_I[t_n]) \end{array}$$

$$F: x+y > z \to y > z-x$$

• Note +, -, > are just symbols: we could have written

- Domain: $D_I = \mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$
- Assignment:

 $lpha_I = \{+ \mapsto +_{\mathbb{Z}}, - \mapsto -_{\mathbb{Z}}, > \mapsto >_{\mathbb{Z}}, x \mapsto 13, y \mapsto 42, z \mapsto 1, \ldots \}$

Semantics of First-Order Logic

Given an interpretation $I : (D_I, \alpha_I)$, $I \vDash F$ or $I \nvDash F$.

$$\begin{split} I \vDash \top, \quad I \nvDash \bot, \\ I \vDash p(t_1, \dots, t_n) & \text{iff } \alpha_I[p(t_1, \dots, t_n)] = \mathsf{true} \\ I \vDash \neg F & \text{iff } I \nvDash F \\ I \vDash F_1 \land F_2 & \text{iff } I \vDash F_1 \text{ and } I \vDash F_2 \\ I \vDash F_1 \lor F_2 & \text{iff } I \vDash F_1 \text{ or } I \vDash F_2 \\ I \vDash F_1 \to F_2 & \text{iff } I \nvDash F_1 \text{ or } I \vDash F_2 \\ I \vDash F_1 \leftrightarrow F_2 & \text{iff } I \nvDash F_1 \text{ or } I \vDash F_2 \\ I \vDash F_1 \leftrightarrow F_2 & \text{iff } (I \vDash F_1 \text{ and } I \vDash F_2) \text{ or } (I \nvDash F_1 \text{ and } I \nvDash F_2) \\ I \vDash \forall x.F & \text{iff for all } v \in D_I, I \lhd \{x \mapsto v\} \vDash F \\ I \vDash \exists x.F & \text{iff there exists } v \in D_I, I \lhd \{x \mapsto v\} \vDash F \end{split}$$

where $J: I \lhd \{x \mapsto v\}$ denotes an x-variant of I:

- $D_J = D_I$
- $\alpha_J[y] = \alpha_I[y]$ for all constant, free variable, function, and predicate symbols y, except that $\alpha_J(x) = v$.

Consider the formula:

$$F: \exists x.f(x) = g(x)$$

and the interpretation $I:(D:\{v_1,v_2\},lpha_I)$:

$$\alpha_I: \{f(v_1)\mapsto v_1, f(v_2)\mapsto v_2, g(v_1)\mapsto v_2, g(v_2)\mapsto v_1\}$$

Compute the truth value of F under I as follows:

1.
$$I \lhd \{x \mapsto v\} \nvDash f(x) = g(x)$$
 for $v \in D$
2. $I \nvDash \exists x.f(x) = g(x)$ since $v \in D$ is arbitrary

Satisfiability and Validity

- A formula F is *satisfiable* iff there exists an interpretation I such that $I \models F$.
- A formula F is *valid* iff for all interpretations I, $I \vDash F$.
- Technically, satisfiability and validity are defined for closed FOL formulas. Convention for formulas with free variables:
 - If we say that a formula F such that free(F) ≠ Ø is valid, we mean that its universal closure ∀ * .F is valid.
 - If we say that F is satisfiable, we mean that its existential closure ∃ * .F is satisfiable.
 - Duality still holds:

 $\forall *.F$ is valid $\iff \exists *.\neg F$ is unsatisfiable.

Extension of the Semantic Argument Method

Most of the proof rules from PL carry over to FOL:

	$\frac{I \nvDash \neg F}{I \vDash F}$
$rac{oldsymbol{I}Deltaightarrowoldsymbol{G}}{oldsymbol{I}Deltaoldsymbol{F},oldsymbol{I}Deltaoldsymbol{G}}$	$\frac{I \nvDash F \land G}{I \nvDash F \mid I \nvDash G}$
$\frac{I\vDash F\lor G}{I\vDash F\mid I\vDash G}$	$\frac{I \nvDash F \lor G}{I \nvDash F, I \nvDash G}$
$rac{IDash F ightarrow G}{I ot= F\mid IDash G}$	$\frac{I \nvDash F \to G}{I \vDash F, I \nvDash G}$
$rac{IDash F\leftrightarrow G}{IDash F\wedge G\mid IDash abla abla abla abla abla$	$rac{I ot arepsilon F \leftrightarrow G}{I arepsilon F \wedge \neg G \mid I arepsilon \neg F \wedge G}$

Rules for Quantifiers

"Universal" rules:

• Universal elimination I:

$$rac{IDash ec x.F}{I \lhd \{x\mapsto v\}Dash F}$$
 for any $v\in D_I$

• Existential elimination I:

$$rac{I
ot\in \exists x.F}{I \lhd \{x\mapsto v\}
ot\models F}$$
 for any $v\in D_I$

There rules are usually applied using a domain element v that was introduced earlier in the proof.

Rules for Quantifiers

"Existential" rules:

• Existential elimination II:

$$rac{IDash \exists x.F}{I \lhd \{x \mapsto v\} Dash F}$$
 for a fresh $v \in D_I$

• Universal elimination II:

$$rac{I
ot\inorall x.F}{I \lhd \{x\mapsto v\}
ot\models F}$$
 for a fresh $v\in D_I$

When applying these rules, \boldsymbol{v} must not have been previously used in the proof.

Contradiction Rule

A contradiction exists if two variants of the original interpretation I disagree on the truth value of an n-ary predicate p for a given tuple of domain values:

$$egin{aligned} J: I \lhd \cdots \vDash p(s_1, \dots, s_n) \ K: I \lhd \cdots \nvDash p(t_1, \dots, t_n) \ \hline I \vDash oldsymbol{oldsymbol{\square}} & ext{for } i \in \{1, \dots, n\}, lpha_J[s_i] = lpha_K[t_i] \end{aligned}$$

Prove that the formula is valid:

$$F:(\forall x.p(x)) \to (\forall y.p(y))$$

Suppose not; there is an interpretation I such that $I \nvDash F$.

1.
$$I \nvDash F$$
assumption2. $I \vDash \forall x.p(x)$ 1 and \rightarrow 3. $I \nvDash \forall y.p(y)$ 1 and \rightarrow 4. $I \lhd \{y \mapsto v\} \nvDash p(y)$ 3 and \forall , for some $v \in D_I$ 5. $I \lhd \{x \mapsto v\} \vDash p(x)$ 2 and \forall 6. $I \vDash \bot$ 4 and 5

Prove that the formula is valid:

$$F:(\forall x.p(x)) \leftrightarrow (\neg \exists x.\neg p(x))$$

We need to show both of forward and backward directions.

$$F_1: (orall x.p(x))
ightarrow (
eg \exists x.
eg p(x)), \ F_2: (orall x.p(x)) \leftarrow (
eg \exists x.
eg p(x))$$

Suppose F_1 is not valid; there is an interpretation I such that $I \nvDash F_1$.

1.
$$I \vDash \forall x.p(x)$$
assumption2. $I \nvDash \neg \exists x. \neg p(x)$ assumption3. $I \vDash \exists x. \neg p(x)$ 2 and \neg 4. $I \lhd \{x \mapsto v\} \vDash \neg p(x)$ 3 and \exists , for some $v \in D_I$ 5. $I \lhd \{x \mapsto v\} \vDash p(x)$ 1 and \forall 6. $I \vDash \bot$ 4 and 5

Exercise) Prove that F_2 is valid.

Hakjoo Oh

Prove that the formula is valid:

$$F: p(a) \rightarrow \exists x.p(x).$$

Assume F is invalid and derive a contradiction:

1.	$I \not\models F$	assumption
2.	$I\vDash p(a)$	1 and $ ightarrow$
3.	$I eq \exists x.p(x)$	1 and $ ightarrow$
4.	$I \lhd \{x \mapsto lpha_I[a]\} ot \models p(x)$	3 and \exists
5.	$I \vDash \bot$	2, 4

Prove that the formula is invalid:

$$F:(\forall x.p(x,x)) \to (\exists x.\forall y.p(x,y))$$

It suffices to find an interpretation I such that $I \vDash \neg F$. Choose $D_I = \{0, 1\}$ and $p_I = \{(0, 0), (1, 1)\}$. The interpretation falsifies F.

Soundness and Completeness of FOL

A proof system is **sound** if every provable formula is valid. It is **complete** if every valid formula is provable.

Theorem (Sound)

If every branch of a semantic argument proof of $I \nvDash F$ closes, then F is valid.

Theorem (Complete)

Each valid formula F has a semantic argument proof.

Substitution

• A substitution is a map from FOL formulas to FOL formulas:

$$\sigma: \{F_1 \mapsto G_1, \dots, F_n \mapsto G_n\}$$

- To compute $F\sigma$, replace each occurrence of F_i in F by G_i simultaneously.
- For example, consider formula

$$F:(\forall x.p(x,y)) \rightarrow q(f(y),x)$$

and substitution

$$\sigma: \{x\mapsto g(x), y\mapsto f(x), q(f(y), x)\mapsto \exists x.h(x,y)\}$$

Then,

$$F\sigma:(\forall x.p(g(x),f(x))) \to \exists x.h(x,y)$$

Safe Substitution

- A restricted application of substitution, which has a useful semantic property.
- Idea: Before applying substitution, replace bound variables to fresh variables.
- For example, consider formula

$$F:(\forall x.p(x,y)) \rightarrow q(f(y),x)$$

and substitution

$$\sigma: \{x\mapsto g(x), y\mapsto f(x), q(f(y), x)\mapsto \exists x.h(x,y)\}$$

Then, safe substitution proceeds

- \blacksquare Renaming: (orall x'.p(x',y)) o q(f(y),x)
- $\hbox{ Substitution: } (\forall x'.p(x',f(x))) \rightarrow \exists x.h(x,y) \\$

Safe Substitution

A FOL version of Substitution of Equivalent Formulas:

Theorem

Consider substitution

$$\sigma: \{F_1 \mapsto G_1, \ldots, G_n \mapsto G_n\}$$

such that for each $i, F_i \iff G_i$. Then $F \iff F\sigma$ when $F\sigma$ is computed as a safe substitution.

A FOL version of Valid Templates:

Theorem

If H is a valid formula schema and σ is a substitution obeying H's side conditions, then $H\sigma$ is also valid.

Examples on Valid Templates

• Consider valid formula schema:

$$H: (\forall x.F) \leftrightarrow (\neg \exists x. \neg F)$$

The formula

$$G:(\forall x.\exists y.q(x,y)\leftrightarrow (\neg\exists x.\neg\exists y.q(x,y))$$

is valid because $G = H\sigma$ for $\sigma: \{F \mapsto \exists y.q(x,y)\}.$

• Consider valid formula schema:

$$H: (\forall x.F) \leftrightarrow F$$
 provided $x \not\in free(F)$

The formula

$$G:(\forall x.\exists y.p(z,y)) \leftrightarrow \exists y.p(z,y)$$

is valid because $G = H\sigma$ for $\sigma : \{F \mapsto \exists y.p(z, y)\}.$

Negation Normal Form

• A FOL formula *F* can be transformed into NNF by using the following equivalences:

Convert the formula into NNF:

$$G: \forall x.(\exists y.p(x,y) \land p(x,z)) \rightarrow \exists w.p(x,w)$$

• Use the equivalence $F_1 o F_2 \iff \neg F_1 \lor F_2$: $\forall x. \neg (\exists y. p(x, y) \land p(x, z)) \lor \exists w. p(x, w)$

2 Use the equivalence $\neg \exists x.F[x] \iff \forall x.\neg F[x]$:

$$\forall x.(\forall y.\neg(p(x,y) \land p(x,z))) \lor \exists w.p(x,w)$$

Ose De Morgan's Law:

$$\forall x.(\forall y.\neg p(x,y) \vee \neg p(x,z)) \vee \exists w.p(x,w)$$

Prenex Normal Form (PNF)

• A formula is in **prenex normal form (PNF)** if all of its quantifiers appear at the beginning of the formula:

$$\mathsf{Q}_1 x_1 \dots \mathsf{Q}_n x_n . F[x_1, \dots, x_n]$$

where $\mathbf{Q}_i \in \{\forall, \exists\}$ and F is quantifier-free.

- Every FOL $m{F}$ has an equivalent PNF. To convert $m{F}$ into PNF,
 - **1** Convert F into NNF: F_1
 - 2 Rename quantified variables to unique names: F₂
 - 3 Remove all quantifiers from F_2 : F_3
 - Add the quantifiers before F_3 :

$$F_4: \mathsf{Q}_1 x_1 \dots \mathsf{Q}_n x_n . F_3$$

where \mathbf{Q}_i are the quantifiers such that if \mathbf{Q}_j is in the scope of \mathbf{Q}_i in F_1 , then i < j.

• A FOL formula is in CNF (DNF) if it is in PNF and its main quantifier-free subformula is in CNF (DNF).

$$F:orall x.
eg(\exists y.p(x,y) \wedge p(x,z)) ee \exists y.p(x,y)$$

Conversion to NNF:

$$F_1: orall x.(orall y.
eg p(x,y) ee
eg p(x,z)) ee \exists y.p(x,y)$$

2 Rename quantified variables:

$$F_2: orall x.(orall y.
eg p(x,y) ee
eg p(x,z)) ee \exists w.p(x,w)$$

8 Remove all quantifiers:

$$F_3:
eg p(x,y) \lor
eg p(x,z) \lor p(x,w)$$

• Add the quantifiers before F_3 :

$$F_4: orall x. orall y. \exists w.
eg p(x,y) \lor
eg p(x,z) \lor p(x,w)$$

Note that $\forall x. \exists w. \forall y. F_3$ is okay, but $\forall y. \exists w. \forall x. F_3$ is not.

Decidability

- Satisfiability can be formalized as a decision problem in formal languages.
- Ex) Let L_{PL} be the set of all satisfiable formulas. Given w, is $w \in L_{PL}$?
- A formal language L is decidable if there exists a procedure that, given a word w, (1) eventually halts and (2) answer yes if $w \in L$ and no if $w \notin L$. Otherwise, L is undecidable.
- L_{PL} is decidable but L_{FOL} is not.

Summary

- Syntax and semantics of first-order logic
- Satisfiability and validity
- Substitution, Normal forms