
AAA528: Computational Logic

Lecture 3 — First-Order Logic

Hakjoo Oh
2018 Fall

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 1 / 31

First-Order Logic

An extension of propositional logic with predicates, functions, and
quantifiers.

First-order logic is also called predicate logic, first-order predicate
calculus, and relational logic.

First-order logic is expressive enough to reason about programs.

However, completely automated reasoning is not possible.

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 2 / 31

Terms (Variables, Constants, and Functions)

Terms denote the objects that we are reasoning about.

While formulas in PL evaluate to true or false, terms in FOL evaluate
to values in an underlying domain such as integers, strings, lists, etc.

Terms in FOL are defined by the grammar:

t→ x | c | f(t1, . . . , fn)

I Basic terms are variables (x, y, z, . . .) and constants (a, b, c, . . .).
I Composite terms include n-ary functions applied to n terms, i.e.,
f(t1, . . . , tn), where tis are terms.

F A constant can be viewed as a 0-ary function.

Examples:
I f(a), a unary function f applied to a constant
I g(x, b), a binary function g applied to a variable x and a constant b
I f(g(x, f(b)))

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 3 / 31

Predicates

The propositional variables of PL are generalized to predicates in
FOL, denoted p, q, r,

An n-ary predicate takes n terms as arguments.

A FOL propositional variable is a 0-ary predicate, denoted P,Q, . . .

Examples:
I P , a propositional variable (or 0-ary predicate)
I p(f(x), g(x, f(x))), a binary predicate applied to two terms

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 4 / 31

Syntax

Atom: basic elements
I truth symbols ⊥ (“false”) and > (“true”)
I n-ary predicates applied to n terms

Literal: an atom α or its negation ¬α.

Formula: a literal or application of a logical connective to formulas,
or the application of a quantifier to a formula.

F → ⊥ | > | p(t1, . . . , tn) atom
| ¬F negation (”not”)
| F1 ∧ F2 conjunction (”and”)
| F1 ∨ F2 disjunction (”or”)
| F1 → F2 implication (”implies”)
| F1 ↔ F2 iff (”if and only if”)
| ∃x.F [x] existential quantification
| ∀x.F [x] universal quantification

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 5 / 31

Notations on Quantification

In ∀x.F [x] and ∃x.F [x], x is the quantified variable and F [x] is
the scope of the quantifier. We say x is bound in F [x].

∀x.∀y.F [x, y] is often abbreviated by ∀x, y.F [x, y].

The scope of the quantified variable extends as far as possible: e.g.,

∀x.p(f(x), x)→ (∃y.p(f(g(x, y)), g(x, y))) ∧ q(x, f(x))

A variable is free in F [x] if it is not bound. free(F) and bound(F)
denote the free and bound variables of F , respectively. A formula F
is closed if F has no free variables. E.g.,

∀x.p(f(x), y)→ ∀y.p(f(x), y)

If free(F) = {x1, . . . , xn}, then its universal closure is
∀x1 . . . ∀xn.F and its existential closure is ∃x1 . . . ∃xn.F . They
are usually written ∀ ∗ .F and ∃ ∗ .F .

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 6 / 31

Example FOL Formulas

Every dog has its day.

∀x.dog(x)→ ∃y.day(y) ∧ itsDay(x, y)

Some dogs have more days than others.

∃x, y.dog(x) ∧ dog(y) ∧#days(x) > #days(y)

The length of one side of a triangle is less than the sum of the lengths
of the other two sides.

∀x, y, z.triangle(x, y, z)→ length(x) < length(y)+length(z)

Fermat’s Last Theorem.

∀n.integer(n) ∧ n > 2
→ ∀x, y, z.
integer(x) ∧ integer(y) ∧ integer(z) ∧ x > 0 ∧ y > 0 ∧ z > 0
→ xn + yn 6= zn

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 7 / 31

Interpretation

A FOL interpretation I : (DI , αI) is a pair of a domain and an
assignment.

DI is a nonempty set of values such as integers, real numbers, etc.

αI maps variables, constant, functions, and predicate symbols to
elements, functions, and predicates over DI .

I each variable x is assigned a value from DI

I each n-ary function symbol f is assigned an n-ary function
fI : Dn

I → DI .
I each n-ary predicate symbol p is assigned an n-ary predicate
pI : Dn

I → {true, false}.
Arbitrary terms and atoms are evaluated recursively:

αI [f(t1, . . . , fn)] = αI [f](αI [t1], . . . , αI [tn])
αI [p(t1, . . . , fn)] = αI [p](αI [t1], . . . , αI [tn])

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 8 / 31

Example

F : x+ y > z → y > z − x

Note +,−, > are just symbols: we could have written

p(f(x, y), z)→ p(y, g(z, x)).

Domain: DI = Z = {. . . ,−1, 0, 1, . . .}
Assignment:

αI = {+ 7→ +Z,− 7→ −Z, >7→>Z, x 7→ 13, y 7→ 42, z 7→ 1, . . .}

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 9 / 31

Semantics of First-Order Logic

Given an interpretation I : (DI , αI), I � F or I 2 F .

I � >, I 2 ⊥,
I � p(t1, . . . , tn) iff αI [p(t1, . . . , tn)] = true
I � ¬F iff I 2 F
I � F1 ∧ F2 iff I � F1 and I � F2

I � F1 ∨ F2 iff I � F1 or I � F2

I � F1 → F2 iff I 2 F1 or I � F2

I � F1 ↔ F2 iff (I � F1 and I � F2) or (I 2 F1 and I 2 F2)
I � ∀x.F iff for all v ∈ DI , I � {x 7→ v} � F
I � ∃x.F iff there exists v ∈ DI , I � {x 7→ v} � F

where J : I � {x 7→ v} denotes an x-variant of I:

DJ = DI

αJ [y] = αI [y] for all constant, free variable, function, and predicate
symbols y, except that αJ(x) = v.

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 10 / 31

Example

Consider the formula:

F : ∃x.f(x) = g(x)

and the interpretation I : (D : {v1, v2}, αI):

αI : {f(v1) 7→ v1, f(v2) 7→ v2, g(v1) 7→ v2, g(v2) 7→ v1}

Compute the truth value of F under I as follows:

1. I � {x 7→ v} 2 f(x) = g(x) for v ∈ D
2. I 2 ∃x.f(x) = g(x) since v ∈ D is arbitrary

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 11 / 31

Satisfiability and Validity

A formula F is satisfiable iff there exists an interpretation I such that
I � F .

A formula F is valid iff for all interpretations I, I � F .

Technically, satisfiability and validity are defined for closed FOL
formulas. Convention for formulas with free variables:

I If we say that a formula F such that free(F) 6= ∅ is valid, we mean
that its universal closure ∀ ∗ .F is valid.

I If we say that F is satisfiable, we mean that its existential closure
∃ ∗ .F is satisfiable.

I Duality still holds:

∀ ∗ .F is valid ⇐⇒ ∃ ∗ .¬F is unsatisfiable.

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 12 / 31

Extension of the Semantic Argument Method

Most of the proof rules from PL carry over to FOL:

I � ¬F
I 2 F

I 2 ¬F
I � F

I � F ∧G
I � F, I � G

I 2 F ∧G
I 2 F | I 2 G

I � F ∨G
I � F | I � G

I 2 F ∨G
I 2 F, I 2 G

I � F → G
I 2 F | I � G

I 2 F → G
I � F, I 2 G

I � F ↔ G
I � F ∧G | I � ¬F ∧ ¬G

I 2 F ↔ G
I � F ∧ ¬G | I � ¬F ∧G

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 13 / 31

Rules for Quantifiers

“Universal” rules:

Universal elimination I:

I � ∀x.F
I � {x 7→ v} � F

for any v ∈ DI

Existential elimination I:

I 2 ∃x.F
I � {x 7→ v} 2 F

for any v ∈ DI

There rules are usually applied using a domain element v that was
introduced earlier in the proof.

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 14 / 31

Rules for Quantifiers

“Existential” rules:

Existential elimination II:

I � ∃x.F
I � {x 7→ v} � F

for a fresh v ∈ DI

Universal elimination II:

I 2 ∀x.F
I � {x 7→ v} 2 F

for a fresh v ∈ DI

When applying these rules, v must not have been previously used in the
proof.

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 15 / 31

Contradiction Rule

A contradiction exists if two variants of the original interpretation I
disagree on the truth value of an n-ary predicate p for a given tuple of
domain values:

J : I � · · · � p(s1, . . . , sn)
K : I � · · · 2 p(t1, . . . , tn)

I � ⊥
for i ∈ {1, . . . , n}, αJ [si] = αK [ti]

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 16 / 31

Example 1

Prove that the formula is valid:

F : (∀x.p(x))→ (∀y.p(y))

Suppose not; there is an interpretation I such that I 2 F .

1. I 2 F assumption
2. I � ∀x.p(x) 1 and→
3. I 2 ∀y.p(y) 1 and→
4. I � {y 7→ v} 2 p(y) 3 and ∀, for some v ∈ DI

5. I � {x 7→ v} � p(x) 2 and ∀
6. I � ⊥ 4 and 5

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 17 / 31

Example 2

Prove that the formula is valid:

F : (∀x.p(x))↔ (¬∃x.¬p(x))

We need to show both of forward and backward directions.

F1 : (∀x.p(x))→ (¬∃x.¬p(x)), F2 : (∀x.p(x))← (¬∃x.¬p(x))

Suppose F1 is not valid; there is an interpretation I such that I 2 F1.

1. I � ∀x.p(x) assumption
2. I 2 ¬∃x.¬p(x) assumption
3. I � ∃x.¬p(x) 2 and ¬
4. I � {x 7→ v} � ¬p(x) 3 and ∃, for some v ∈ DI

5. I � {x 7→ v} � p(x) 1 and ∀
6. I � ⊥ 4 and 5

Exercise) Prove that F2 is valid.

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 18 / 31

Example 3

Prove that the formula is valid:

F : p(a)→ ∃x.p(x).

Assume F is invalid and derive a contradiction:

1. I 6� F assumption
2. I � p(a) 1 and→
3. I 6� ∃x.p(x) 1 and→
4. I � {x 7→ αI [a]} 6� p(x) 3 and ∃
5. I � ⊥ 2, 4

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 19 / 31

Example 4

Prove that the formula is invalid:

F : (∀x.p(x, x))→ (∃x.∀y.p(x, y))

It suffices to find an interpretation I such that I � ¬F . Choose
DI = {0, 1} and pI = {(0, 0), (1, 1)}. The interpretation falsifies F .

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 20 / 31

Soundness and Completeness of FOL

A proof system is sound if every provable formula is valid. It is complete
if every valid formula is provable.

Theorem (Sound)

If every branch of a semantic argument proof of I 2 F closes, then F is
valid.

Theorem (Complete)

Each valid formula F has a semantic argument proof.

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 21 / 31

Substitution

A substitution is a map from FOL formulas to FOL formulas:

σ : {F1 7→ G1, . . . , Fn 7→ Gn}

To compute Fσ, replace each occurrence of Fi in F by Gi

simultaneously.

For example, consider formula

F : (∀x.p(x, y))→ q(f(y), x)

and substitution

σ : {x 7→ g(x), y 7→ f(x), q(f(y), x) 7→ ∃x.h(x, y)}

Then,
Fσ : (∀x.p(g(x), f(x)))→ ∃x.h(x, y)

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 22 / 31

Safe Substitution

A restricted application of substitution, which has a useful semantic
property.

Idea: Before applying substitution, replace bound variables to fresh
variables.

For example, consider formula

F : (∀x.p(x, y))→ q(f(y), x)

and substitution

σ : {x 7→ g(x), y 7→ f(x), q(f(y), x) 7→ ∃x.h(x, y)}

Then, safe substitution proceeds
1 Renaming: (∀x′.p(x′, y))→ q(f(y), x)
2 Substitution: (∀x′.p(x′, f(x)))→ ∃x.h(x, y)

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 23 / 31

Safe Substitution

A FOL version of Substitution of Equivalent Formulas:

Theorem

Consider substitution

σ : {F1 7→ G1, . . . , Gn 7→ Gn}

such that for each i, Fi ⇐⇒ Gi. Then F ⇐⇒ Fσ when Fσ is
computed as a safe substitution.

A FOL version of Valid Templates:

Theorem

If H is a valid formula schema and σ is a substitution obeying H’s side
conditions, then Hσ is also valid.

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 24 / 31

Examples on Valid Templates

Consider valid formula schema:

H : (∀x.F)↔ (¬∃x.¬F)

The formula

G : (∀x.∃y.q(x, y)↔ (¬∃x.¬∃y.q(x, y))

is valid because G = Hσ for σ : {F 7→ ∃y.q(x, y)}.
Consider valid formula schema:

H : (∀x.F)↔ F provided x 6∈ free(F)

The formula

G : (∀x.∃y.p(z, y))↔ ∃y.p(z, y)

is valid because G = Hσ for σ : {F 7→ ∃y.p(z, y)}.
Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 25 / 31

Negation Normal Form

A FOL formula F can be transformed into NNF by using the
following equivalences:

¬¬F1 ⇐⇒ F1

¬> ⇐⇒ ⊥
¬⊥ ⇐⇒ >

¬(F1 ∧ F2) ⇐⇒ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇐⇒ ¬F1 ∧ ¬F2

F1 → F2 ⇐⇒ ¬F1 ∨ F2

F1 ↔ F2 ⇐⇒ (F1 → F2) ∧ (F2 → F1)
¬∀x.F [x] ⇐⇒ ∃x.¬F [x]
¬∃x.F [x] ⇐⇒ ∀x.¬F [x]

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 26 / 31

Example

Convert the formula into NNF:

G : ∀x.(∃y.p(x, y) ∧ p(x, z))→ ∃w.p(x,w)

1 Use the equivalence F1 → F2 ⇐⇒ ¬F1 ∨ F2:

∀x.¬(∃y.p(x, y) ∧ p(x, z)) ∨ ∃w.p(x,w)

2 Use the equivalence ¬∃x.F [x] ⇐⇒ ∀x.¬F [x]:

∀x.(∀y.¬(p(x, y) ∧ p(x, z))) ∨ ∃w.p(x,w)

3 Use De Morgan’s Law:

∀x.(∀y.¬p(x, y) ∨ ¬p(x, z)) ∨ ∃w.p(x,w)

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 27 / 31

Prenex Normal Form (PNF)

A formula is in prenex normal form (PNF) if all of its quantifiers
appear at the beginning of the formula:

Q1x1. . . .Qnxn.F [x1, . . . , xn]

where Qi ∈ {∀, ∃} and F is quantifier-free.

Every FOL F has an equivalent PNF. To convert F into PNF,
1 Convert F into NNF: F1

2 Rename quantified variables to unique names: F2

3 Remove all quantifiers from F2: F3

4 Add the quantifiers before F3:

F4 : Q1x1. . . .Qnxn.F3

where Qi are the quantifiers such that if Qj is in the scope of Qi in
F1, then i < j.

A FOL formula is in CNF (DNF) if it is in PNF and its main
quantifier-free subformula is in CNF (DNF).

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 28 / 31

Example

F : ∀x.¬(∃y.p(x, y) ∧ p(x, z)) ∨ ∃y.p(x, y)

1 Conversion to NNF:

F1 : ∀x.(∀y.¬p(x, y) ∨ ¬p(x, z)) ∨ ∃y.p(x, y)

2 Rename quantified variables:

F2 : ∀x.(∀y.¬p(x, y) ∨ ¬p(x, z)) ∨ ∃w.p(x,w)

3 Remove all quantifiers:

F3 : ¬p(x, y) ∨ ¬p(x, z) ∨ p(x,w)

4 Add the quantifiers before F3:

F4 : ∀x.∀y.∃w.¬p(x, y) ∨ ¬p(x, z) ∨ p(x,w)

Note that ∀x.∃w.∀y.F3 is okay, but ∀y.∃w.∀x.F3 is not.
Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 29 / 31

Decidability

Satisfiability can be formalized as a decision problem in formal
languages.

Ex) Let LPL be the set of all satisfiable formulas. Given w, is
w ∈ LPL?

A formal language L is decidable if there exists a procedure that,
given a word w, (1) eventually halts and (2) answer yes if w ∈ L and
no if w 6∈ L. Otherwise, L is undecidable.

LPL is decidable but LFOL is not.

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 30 / 31

Summary

Syntax and semantics of first-order logic

Satisfiability and validity

Substitution, Normal forms

Hakjoo Oh AAA528 2018 Fall, Lecture 3 September 15, 2018 31 / 31

