
AAA528: Computational Logic

Lecture 2 — CDCL SAT Solvers

Hakjoo Oh
2018 Fall

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 1 / 16



Progress of SAT Solving

(Courtesy of D. Le-Berre)

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 2 / 16



Impact of CDCL

(Courtesy of Katebi et al. 2011)

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 3 / 16



Review: DPLL

let rec DPLL F =
let F ′ = BCP(F ) in
if F ′ = > then true
else if F ′ = ⊥ then false
else

let P = Choose(vars(F ′)) in
(DPLL F ′{P 7→ >}) ∨ (DPLL F ′{P 7→ ⊥})

DPLL performs backtrack search, where each step involves

deciding a variable to branch on,

propagating logical implication of this decision, and

backtracking in the case of conflict.

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 4 / 16



Modern SAT Solving

Three major features of CDCL SAT solvers:

Non-chronological backtracking
I DPLL always backtracks to the most recent decision level.

Learning from past failures (covered in this lecture)
I DPLL revisits bad partial assignments that share the same root cause.

Heuristics for choosing variables and assignments
I DPLL chooses arbitrary variables.

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 5 / 16



Decision Variable and Level

DPLL performs a search on a binary tree.

Decision variable: the assigned variable

Decision level: the depth of the binary tree at which the decision is
made, starting from 1.

I The assignments implied by a decision (via BCP) are associated with
the level of the decision.

Example:
(¬P ∨Q) ∧ (R ∨ ¬Q ∨ S)

Choose P and assign P = >: P is the decision variable at level 1.

With BCP, Q is assigned > at level 1.

Choose R and assign R = > at decision level 2.

BCP deduces S = >. the decision level of S is 2.

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 6 / 16



Example

Consider the CNF formula:

φ = w1 ∧ w2 ∧ w3

= (x1 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x3 ∨ x2 ∨ x4)

Assume the decision assignment: x4 = 0@1.

Unit propagation yields no additional implications.

The second decision: x1 = 0@2.

Unit propagation yields implied assignments x3 = 1@2 and
x2 = 1@2.

α(x3) = w2 and α(x2) = w3.

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 7 / 16



Implication Graph

An implication graph is a labelled directed acyclic graph G(V,E)

Nodes (V ) are the literals in the current partial assignment. Each
node is labelled with the literal and the decision level at which it is
assigned.

I xi : dl: xi was assigned to > at decision level dl.
I ¬xi : dl: xi was assigned to ⊥ at decision level dl.

E denotes the set of directed edges labelled with clauses: l
c→ l′.

Edges from l1, . . . , lk to l labelled with c mean that assignments
l1, . . . , lk caused assignment l due to clause c during BCP.

I If l′ is implied from c, then there is an directed edge from l to l′ where
¬l ∈ c.

A special node C (or κ) is called the conflict node.

Edge to conflict node labeled with c: current partial assignment
contradicts clause c.

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 8 / 16



Example 1

c1 : (¬a ∨ c) c2 : (¬a ∨ ¬b) c3 : (¬c ∨ b)

Assume a is assigned > at decision level 2.

The implication graph:

I The root node denotes the decision literal.
I a

c1→ c: assignment a = > caused assignment c = > due to clause

c1 during BCP. Similar for a
c2→ ¬b.

I c
c3→ C and b

c3→ C: assignments c = > and b = ⊥ caused a
contradiction due to clause c3.

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 9 / 16



Example 2

c1 : (¬a ∨ c) c2 : (¬c ∨ ¬a ∨ b) c3 : (¬c ∨ d) c4 : (¬d ∨ ¬b)

Assume a is assigned > at decision level 1.
During BCP,

I a = > causes c = > due to c1: a
c1→ c.

I a = > and c = > cause b = > due to c2: a
c2→ b and c

c2→ b.
I c = > causes d = > due to c3: c

c3→ d.
I Assignments b = > and d = > cause a contradiction due to c4:

b
c4→ C and d

c4→ C.

The implication graph:

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 10 / 16



Example 3

Consider a formula that contains the following clauses, among others:

c1 : (¬x1 ∨ x2) c2 : (¬x1 ∨ x3 ∨ x5) c3 : (¬x2 ∨ x4) c4 : (¬x3 ∨ ¬x4)
c5 : (x1 ∨ x5 ∨ ¬x2) c6 : (x2 ∨ x3) c7 : (x2 ∨ ¬x3) c8 : (x6 ∨ ¬x5)

Assume that at decision level 3 the decision was ¬x6, which implied
¬x5 due to c8.

Assume further that the solver is now at decision level 6 and assigns
x1 = >. At decision levels 4 and 5, variables other than x1, . . . , x6

were assigned and not relevant to these clauses.

The implication graph:

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 11 / 16



Learning a Conflict Clause

To avoid the conflict, the solver learns a conflict clause

c9 : (x5 ∨ ¬x1)

and adds it to the formula.

This process of adding conflict clauses is the solver’s way to learn
from its past mistakes.

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 12 / 16



Learning a Conflict Clause via Resolution

Start from the unsatisfied clause: c := c4 = (¬x3 ∨ ¬x4)
Pick the implied literal with level 6 in the clause: x3

Pick any incoming edge of x3: c2 = (¬x1 ∨ x3 ∨ x5)
Resolve c4 and c2: c := (¬x1 ∨ ¬x4 ∨ x5)
Pick the implied literal with level 6: ¬x4

PIck the incoming edge of x4: c3 = (¬x2 ∨ x4)
Resolve c3 and c: c := (¬x1 ∨ ¬x2 ∨ x5)
Pick the implied literal with level 6: ¬x2

Pick the incoming edge: c1 = (¬x1 ∨ x2)
Resolve c1 with c: c := (¬x1 ∨ x5). No more resolutions.

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 13 / 16



Heuristic for Deriving Better Conflict Clause

Learn smaller conflict clause x2 ∨ ¬x4.

1 Find first unique implication point (UIP): x4 : 8.
I All paths from current decision node to the conflict node must go

through UIP. First UIP is closest to conflict node.

2 The clause labelling incoming edge to C: c1 = (x2 ∨ x3)

3 Find the last assigned literal in c1: ¬x3

4 Pick any incoming edge to ¬x3: c3 = (¬x4 ∨ ¬x3)

5 Resolve c1 and c3: x2 ∨ ¬x4

6 Set the current clause to resolvent and repeat (2)–(5) until negation of first
UIP is found

7
Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 14 / 16



Backtracking Level

Backtracking level d deletes all assignments made after level d
(assignments made d not deleted)

A good strategy is to backtrack to the second highest decision level
d′ for literals in the conflict clause c.

At the level d′, c is always unit (exactly one unassigned literal).

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 15 / 16



Summary

Conflict-Driven Clause Learning

Variable selection heuristics: DLIS, VSIDS, ...

Slides based on the lecture (See for other heuristics/optimizations):

http://www.cs.utexas.edu/~isil/cs389L/lecture3-6up.pdf

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 16 / 16

http://www.cs.utexas.edu/~isil/cs389L/lecture3-6up.pdf

