AAA528: Computational Logic

Lecture 2 — CDCL SAT Solvers

Hakjoo Oh
2018 Fall

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 1/16

Progress of SAT Solving

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

1200 T T T
Limmat (2002)
Zchaff (2002)
Berkmin (2002)
Forklift (2003)
Siege (2003)

1000 Zchaff (2004)
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)

Rsat (2007)
Minisat 2.1 (2008)
800 Precosat (2009)
Glucose (2009)
Clasp (2009)
Cryptominisat (2010)
Lingeling (2010)
Minisat 2.2 (2010)
Glucose 2 (2011)
Glueminisat (2011)
Contrasat (2011)

so4d > [¥

CPU Time (in seconds)
T
0O00GOo e«

Hakjoo Oh AAA528 2018 Fall, Lectur

T T I ——
L v

Number of problems solved

180

(Courtesy of D. Le-Berre)

September 16, 2018

2/ 16

Impact of CDCL

T
® ees o o fll.umo

SRR
Pam '-l%x x@xxsxxxaxx &a.u\
LR <

S

Tz
A)Aﬁl.
l}[
A}Allt.
Sagy
xxx%%*f
oN
[R e T o R o T o B = S = R v B
[=EE =T R N I
m987654321
(OELIANIE o)

200 300 400 500 600 700 800 900 1000
Instances

100

(Courtesy of Katebi et al. 2011)

AAA528 2018 Fall, Lecture 2

Hakjoo Oh

Review: DPLL

let rec DPLL F =
let F/ = BCP(F) in
if F/ = T then true
else if F/ = L then false
else
let P = Choose(vars(F")) in
(DPLL F/'{P + T})V (DPLL F'{P — })
DPLL performs backtrack search, where each step involves
@ deciding a variable to branch on,
@ propagating logical implication of this decision, and

@ backtracking in the case of conflict.

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 4/ 16

Modern SAT Solving

Three major features of CDCL SAT solvers:
@ Non-chronological backtracking
» DPLL always backtracks to the most recent decision level.

7

@/Q@

@ Learning from past failures (covered in this lecture)

» DPLL revisits bad partial assignments that share the same root cause.
@ Heuristics for choosing variables and assignments

» DPLL chooses arbitrary variables.

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 5/ 16

Decision Variable and Level

DPLL performs a search on a binary tree.

@ Decision variable: the assigned variable

@ Decision level: the depth of the binary tree at which the decision is
made, starting from 1.

» The assignments implied by a decision (via BCP) are associated with
the level of the decision.

Example:
("PVQ)AN(RV-QVS)

@ Choose P and assign P = T: P is the decision variable at level 1.
o With BCP, @ is assigned T at level 1.

@ Choose R and assign R = T at decision level 2.

o BCP deduces § = T. the decision level of S is 2.

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 6 /16

Example
Consider the CNF formula:

¢ = wi A\ws A\ ws
= (1131\/—|CU4)/\(131\/:133)/\(—!:133\/932\/1134)

Assume the decision assignment: x4 = 0@1.
Unit propagation yields no additional implications.

The second decision: 1 = 0Q@2.

Unit propagation yields implied assignments 3 = 1@2 and
ro = 1@2.

a(xz) = we and a(xz) = ws.

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 7 /16

Implication Graph

@ An implication graph is a labelled directed acyclic graph G(V, E)

@ Nodes (V') are the literals in the current partial assignment. Each
node is labelled with the literal and the decision level at which it is
assigned.

> x; : dl: x; was assigned to T at decision level dl.
» —x; : dl: x; was assigned to L at decision level dl.

o E denotes the set of directed edges labelled with clauses: 1 = 1.
Edges from Iy, ...,l to I labelled with ¢ mean that assignments
l1,...,1 caused assignment [due to clause ¢ during BCP.

» If I’ is implied from ¢, then there is an directed edge from [to I’ where
-l € c.

@ A special node C (or k) is called the conflict node.

@ Edge to conflict node labeled with ¢: current partial assignment
contradicts clause c.

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 8 /16

Example 1
cy ¢ (—|aVC) Cco (—|aV—|b) Cc3: (_ICVb)

@ Assume a is assigned T at decision level 2.
@ The implication graph:

Root node

» The root node denotes the decision literal.

» a3 ¢ assignment @ = T caused assignment ¢ = T due to clause
¢y during BCP. Similar for a <3 —b.

» ¢ 3 Cand b3 C: assignments ¢ = T and b = L caused a
contradiction due to clause c3.

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 9 /16

Example 2

ci:(maVve) c2:(—cV—-aVvb) czg:(-cVvd) cqg:(—dV—bd)

@ Assume a is assigned T at decision level 1.
@ During BCP,
» a=T causesc = T duetoc;: a > c.
» a=Tand c= T cause b = T due to cs: a3bandc3b.
» ¢ = T causes d = T due to c3: c3& d.
> Assignments b = T and d = T cause a contradiction due to cy4:
b3 Candd 3B C.

@ The implication graph:

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 10 / 16

Example 3

Consider a formula that contains the following clauses, among others:

ci:(mx1 V) ca:(mxiVazVas) cz:(mx2Vaey) cq:(xsV xy
cs: (1 VsV x2) cg:(xaVag) cr:(xaVxs) cs:(xeV xs)

@ Assume that at decision level 3 the decision was —axg, which implied
x5 due to cs.

@ Assume further that the solver is now at decision level 6 and assigns
x1 = T. At decision levels 4 and 5, variables other than x1,...,xg
were assigned and not relevant to these clauses.

@ The implication graph:

cl c3
c4
c2
: . @ :
—

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 11 /16

Learning a Conflict Clause

@ To avoid the conflict, the solver learns a conflict clause
Cg : (335 \Y% —wl)

and adds it to the formula.

@ This process of adding conflict clauses is the solver's way to learn
from its past mistakes.

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 12 /16

Learning a Conflict Clause via Resolution

@ - Cz @ :
— —

Start from the unsatisfied clause: ¢ := ¢4 = (—x3 V —xy4)
Pick the implied literal with level 6 in the clause: x3

Pick any incoming edge of x3: c2 = (—x1 V 3 V x5)
Resolve ¢4 and ¢c2: ¢ := (—x1 V x4 V x5)

Pick the implied literal with level 6: —axy4

Plck the incoming edge of x4: cg = (mx2 V x4)

Resolve ¢3 and ¢: ¢ := (—x1 V ~x2 V x5)

Pick the implied literal with level 6: —axo

Pick the incoming edge: ¢1 = (—x1 V x2)

Resolve ¢;1 with ¢: ¢ := (-1 V x5). No more resolutions.

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 13 / 16

Heuristic for Deriving Better Conflict Clause

Learn smaller conflict clause x2 V —x4.
@ Find first unique implication point (UIP): x4 : 8.

» All paths from current decision node to the conflict node must go
through UIP. First UIP is closest to conflict node.

@ The clause labelling incoming edge to C: ¢; = (x2 V x3)
© Find the last assigned literal in ¢1: —x3

@ Pick any incoming edge to ~x3: cg = (nxq V x3)

@ Resolve ¢; and ¢3: 2 V —xy

O Set the current clause to resolvent and repeat (2)—(5) until negation of first
UIP is found

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 14 / 16

Backtracking Level

@ Backtracking level d deletes all assignments made after level d
(assignments made d not deleted)

@ A good strategy is to backtrack to the second highest decision level
d’ for literals in the conflict clause c.

o At the level d’, ¢ is always unit (exactly one unassigned literal).

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 15 / 16

Summary

Algorithm 2.2.1: DPLL-SAT

Input: A propositional CNF formula B
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable”
otherwise

1. function DPLL

2 if BCP() = “conflict” then return “Unsatisfiable”;

3 while (TRUE) do

4 if “DECIDE() then return “Satisfiable”;

5. else

6 while (BCP() = “conflict”) do

7 backtrack-level := ANALYZE-CONFLICT();

8 if backtrack-level < 0 then return “Unsatisfiable”;
9 else BackTrack(backtrack-level);

@ Conflict-Driven Clause Learning
@ Variable selection heuristics: DLIS, VSIDS, ...
o Slides based on the lecture (See for other heuristics/optimizations):

http://www.cs.utexas.edu/"isil/cs389L/lecture3-6up.pdf

Hakjoo Oh AAA528 2018 Fall, Lecture 2 September 16, 2018 16 / 16

http://www.cs.utexas.edu/~isil/cs389L/lecture3-6up.pdf

