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Syntax

@ Atom: basic elements

» truth symbols L (“false”) and T (“true”)
» propositional variables P,Q, R, ...

o Literal: an atom « or its negation —a.

e Formula: a literal or the application of a logical connective (boolean
connective) to formulas

F — 1

T
P

- F

Fy N Fy
IV Fy
P — F,
F1 <> F2

negation ("not")
conjunction ("and")
disjunction ("or")
implication ("implies”)
iff ("if and only if')
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Syntax

@ Formula G is a subformula of formula F' if it occurs syntactically

within G.
sub(l) = {Ll}
sub(T) = {T}
sub(P) = {P}
sub(—F) = {—=F} Usub(F)
sub(F1 VAN Fz) = {F1 A Fz} U sub(Fl) U sub(FQ)
e F: (PANQ)— (PV Q)
» sub(F) =
@ The strict subformulas of a formula are all its subformulas except
itself.
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Semantics

@ The semantics of a logic provides its meaning. The meaning of a PL

formula is either true or false.

@ The semantics of a formula is defined with an interpretation (or
assignment) that assigns truth values to propositional variables.

@ For example, F : P A Q — P VvV —(Q evaluates to true under the
interpretation I : { P > true, Q — false}:

P

Q

—Q

PAQ

PV -Q

F

1

0

1

0

1

1

@ The tabular notation is unsuitable for predicate logic. Instead, we
define the semantics inductively.
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Inductive Definition of Semantics

In an inductive definition, the meaning of basic elements is defined first.
The meaning of complex elements is defined in terms of subcomponents.

@ We write I = F if F evaluates to true under I.
@ We write I ¥ F if F evaluates to false under I.

IET, ITFL,

I=P iff I[P] = true
I#P iff I[P] = false
IE-F iff T¥F

IEF ANF, iff TEFyandIFE Fy
I':Fl\/Fz |fFI|=F10rI|=F2

IEF — F; iff TF FyorlkE Fy
I':Fl(—)Fz iff (IF=F1andI|=F2)or(IJ?fFlandIJ#F2)
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Example

Consider the formula
F:PANQ— PV -Q
and the interpretation
I: {P > true,Q > false}

The truth value of F' is computed as follows:

I-P since I[P] = true
I7Q since I[Q] = false
IE-Q by 2 and semantics of —

IZPAQ Dby?2 and semantics of A
IE PV -Q byl and semantics of V
IEF by 4 and semantics of —

AN e
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Satisfiability and Validity

o A formula F is satisfiable iff there exists an interpretation I such
that I E F.

@ A formula F is valid iff for all interpretations I, I F F.
e Satisfiability and validity are dual®:

F is valid iff =F is unsatisfiable

@ We can check satisfiability by deciding validity, and vice versa.

!In logic, functions (or relations) A and B are dual if A(x) = ~B(—=x)

Hakjoo Oh AAA528 2018 Fall, Lecture 1 September 2, 2018 7 /45



Deciding Validity and Satisfiability

Two approaches to show F' is valid:

@ Truth table method performs exhaustive search: e.g.,
F:PANQ — PV Q.

P|lQ|IPANQ|-Q|PV-Q|F
00 0 1 1 1
0|1 0 0 0 1
10 0 1 1 1
1|1 1 0 1 1

Non-applicable to logic with infinite domain (e.g., first-order logic).
@ Semantic argument method uses deduction:
» Assume F is invalid: I ¥ F for some I (falsifying interpretation).
» Apply deduction rules (proof rules) to derive a contradiction.
> If every branch of the proof derives a contradiction, then F' is valid.
» If some branch of the proof never derives a contradiction, then F' is
invalid. This branch describes a falsifying interpretation of F'.
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Deduction Rules for Propositional Logic

IEF IFEF

I~#F IEF
IEFANG I#FAG
IFFIFG IFF|IFEG
IFFVG I#FVG

IEF|IEG I F,I1FG

IFF -G I¥F —G
I¥FF|IEG IEFF,IFG

IFF & G IFF G
IEFEFANG|IEF—-FA-G IEFA-G|IE-FAG

IEF IFF
ITE L
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Example 1

To prove that the formula
F:PA Q — PV —|Q

is valid, assume that it is invalid and derive a contradiction:

1. TEPAQ — PV —Q assumption

2. TEPAQ by 1 and semantics of —
3. TEPV-Q by 1 and semantics of —
4. IF P by 2 and semantics of A
5 IEZP by 3 and semantics of V
6. I'F_L1 4 and 5 are contradictory
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Example 2

To prove that the formula
F:(P—-Q)AN(Q—R)— (P—R)

is valid, assume that it is invalid and derive a contradiction:

1. T F assumption

2. TE(P—Q)A(Q — R) byl and semantics of —
3. T¥P— R by 1 and semantics of —
4. TP by 3 and semantics of —
5. T¥R by 3 and semantics of —
6. IFP—Q 2 and semantics of A

7. IFQ—> R 2 and semantics of A

Two cases consider from 6:
@ I ¥ P: contradiction with 4.

@ I E Q: two cases to consider from 7:

@ I ¥ Q: contradiction
@ I E R: contradiction with 5.

Hakjoo Oh AAA528 2018 Fall, Lecture 1 September 2, 2018 11 / 45



Proof Tree

A proof evolves as a tree.

@ A branch is a sequence descending from the root.

@ A branch is closed if it contains a contradiction. Otherwise, the
branch is open.

@ It is a proof of the validity of F' if every branch is closed; otherwise,
each open branch describes a falsifying interpretation of F'.
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Exercise

Apply the semantic argument method to the formula:

F:PVvQ—PAQ
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Derived Rules

The proof rules are sufficient, but derived rules can make proofs more
concise. E.g., the rule of modus ponens:

IEF IFF—G
IEG

The proof of the validity of the formula:
F:(P—-Q)AN(Q—R)— (P—R)

1. IEF assumption

2. IE(P—>Q)AN(Q — R) byl and semantics of —
3. I#P—R by 1 and semantics of —
4. IEP by 3 and semantics of —
5. ITFR by 3 and semantics of —
6. IFP—>Q 2 and semantics of A

7. IFQ—R 2 and semantics of A

8. ITIEFQ by 4, 6, and modus ponens
9. IER by 8, 7, and modus ponens
10. IF L 5 and 9 are contradictory

Hakjoo Oh AAA528 2018 Fall, Lecture 1 September 2, 2018 14 / 45



Equivalence and Implication

@ Two formulas Fy and F5 are equivalent
Fy, < F,

iff F1 <> F5 is valid, i.e., for all interpretations I, I E Fy <> F5.

@ Formula F; implies formula F5
F, — Fy

iff F; — F5 is valid, i.e., for all interpretations I, I E F} — F5.

@ Fi <= F3 and I3 — F3 are not formulas. They are semantic
assertions.

@ We can check equivalence and implication by checking satisfiability.
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Examples

o P <— ——P
o P—>Q < -PVQ
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Exercise

Prove that
RA(-RANP) = P
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Substitution

@ A substitution o is a mapping from formulas to formulas:
oc:{FF— Gg,...,F, —» G}
@ The domain of o, dom(o), is
dom(o) : {F1,...,F,}
while the range range(o) is
range(o) : {G1,...,Gn}

@ The application of a substitution o to a formula F', F'o, replaces
each occurence of F; with G;. Replacements occur all at once.

® When two subformulas F; and Fy, are in dom(o) and Fj, is a strict
subformula of F}, then Fj is replaced first.
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Example

Consider formula
F:PANQ— PV-Q

and substitution
c:{P—~R,PNQ+— P — Q}

Then,
Fo:(P—>Q)— RV-Q

Note that Fo # (R — Q) — RV Q.
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Substitution

@ A variable substitution is a substitution in which the domain consists
only of propositional variables.

o When we write F[Fy,..., F,], we mean that formula F' can have
formulas F1, ..., F;, as subformulas.

o lfois{F1 — G1,...,F, — Gy}, then
F[Fi,...,F,]lo: F[G1,...,Gy]
@ For example, in the previous example, writing
F[P,PANQ]o: FR,P — Q]

emphasizes that P and P A @Q are replaced by R and P — Q,
respectively.
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Semantic Consequences of Substitution

Lemma (Substitution of Equivalent Formulas)

Consider substitution o : {F1 — G1,...,Fy, — Gy} such that for
each i, F; <— G;. Then, F <— Fo.

For example, applying o : {P — Q — =PV Q} to
F: (P — Q) — R produces (—P V Q) — R that is equivalent to F.
Lemma (Valid Template)

If F is valid and G = Fo for some variable substitution o, then G is
valid.

For example, because F' : (P — Q) <> (=P Vv Q) is valid, every formula
of the form Fy — F5 is equivalent to = F} V F5, for arbitrary formulas
Fl and F2.

Proving the validity of F' actually proves the validity of an infinite set of
formulas: those that can be derived from F' via variable substitution.
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Composition of Substitutions

Given substitutions o1 and o2, their composition o = o102 (“apply o1
and then o2") is computed as follows:

@ Apply o2 to each formula of the range of o1, and add the results to
.

Q If F; of F; — G; appears in the domain of o5 but not in the domain
of o1, then add F; — G; to o.

For example,

o0102: {P— R, PAQ+— P — Q}P— 5,5 Q}
={P+— Ro3,PAQ— (P = Q)o2,S — Q}
={P—-RPAQ—S—Q,S— Q}
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Normal Forms

A normal form of formulas is a syntactic restriction such that for every

formula of the logic, there is an equivalent formula in the normal form.
Three useful normal forms in logic:

e Negation Normal Form (NNF)
e Disjunctive Normal Form (DNF)
e Conjunctive Normal Form (CNF)
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Negation Normal Form (NNF)

@ NNF requires that =, A, and V are the only connectives (i.e., no —
and <) and that negations appear only in literals.

» PAQA(RV —S)

> PV (P AQ))
> —|—|P/\Q

@ Transforming a formula F' to equivalent formula F’ in NNF can be
done by repeatedly applying the following list of template

equivalences:

-—Fh < £
=T <= 1
-l <= T
—|(F1 VA F2) p—— _|F1 Vv —|F2
—|(F1 \Y Fz) <— -Fiy N —Fy
P —F, <— -F,VFE
P F, <— (Fl — Fz) AN (Fg — Fl)
T
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Exercise
Convert F' : =(P — =(P A Q)) into NNF.
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Disjunctive Normal Form (DNF)

e A formula is in disjunctive normal form (DNF) if it is a disjunction of
conjunctive clauses (conjunctions of literals):

ALY,
i g

@ To convert a formula F' into an equivalent formula in DNF, transform
F into NNF and then distribute conjunctions over disjunctions:

(Fl \Y4 F2) NF3 <— (Fl AN F3) Vv (Fz AN F3)
P A (F2 Vv F3) R (Fl A F2) V (F1 AN F3)
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Exercise

To convert
F : (Ql Vv —|—|Q2) VAN (—|R1 — R2)

into DNF,
o first transform it into NNF:

@ then apply distributivity:
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Conjunctive Normal Form (CNF)

@ A formula is in conjunctive normal form (CNF) if it is a conjunction
of clauses (i.e. conjunctions of disjunctions of literals):

AV i
i g

@ To convert a formula F' into an equivalent formula in DNF, transform
F into NNF and distribute disjunctions over conjunctions:

(Fl N F2) V F3 <— (Fl \Y F3) N\ (Fz Vv F3)
v (F2 AN F3) R (Fl V Fz) N\ (F1 Vv F3)

e Exercise) Convert F : (Q1 A =—Q2) V (-R1 — R2) into CNF.
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Decision Procedures

@ A decision procedure decides whether F is satisfiable after some
finite steps of computation.
@ Approaches for deciding satisfiability:

» Search: exhaustively search through all possible assignments

» Deduction: deduce facts from known facts by iteratively applying
proof rules

» Combination: Modern SAT solvers are based on DPLL that combines
search and deduction in an effective way

Hakjoo Oh AAA528 2018 Fall, Lecture 1 September 2, 2018 29 / 45



Exhaustive Search

@ The recursive algorithm for deciding satisfiability:

let rec SAT F =
if ' = T then true
else if FF = L then false
else
let P = Choose(vars(F)) in
(SAT F{P — T})V (SAT F{P — 1})

e When applying F{P — T} and F{P + L}, the resulting
formulas should be simplified using template equivalences on PL.

T <— L 1l <— T ——F <— F
FANT «<— F FANl <— 1 FANF <— F
FVT «<— T FVl < F FVF «<— F
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Example
F: (P> Q) APA-Q

@ Choose variable P and
F{P—T}:(T=>Q) ANTA-Q

which simplifies to

F,: QN—Q

» F{Q— T}: L
» {Q+— L}: L
@ Recurse on the other branch for P in F":

F{P— 1}:(L—>Q)ANLA-Q
which simplifies to L.

@ All branches end without finding a satisfying assignment.
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Example

F:(P— Q)A-P

@ Choose P and recurse on the first case:
F{P— T}:(T—=>Q)AN-T

which is equivalent to L.

@ Try the other case:
F{P—> 1}:(L—>Q)N—-L

which is equivalent to T.

@ Arbitrarily assigning a value to @ produces the satisfying
interpretation:
I:{P > false, Q — true}.
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Equisatisfiability

SAT solvers convert a given formula F to CNF.

@ Conversion to an equivalent CNF incurs exponential blow-up in
worst-case.

@ F'is converted to an equisatisfiable CNF formula, which increases the
size by only a constant factor.

F and F’ are equisatisfiable when F is satisfiable iff F” is
satisfiable.

Equisatisfiability is a weaker notion of equivalence, which is still useful
when deciding satisfiability.
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Conversion to an Equisatisfiable Formula in CNF

@ ldea: Introduce new variables to represent the subformulas of F' with
extra clauses that assert that these new variables are equivalent to
the subformulas that they represent.

) F:m1—>(m2/\m3)

» Introduce two variables a; and as with two equivalences:
a; <> (CL’l — az)
as <> (:Bz VAN CB3)
We need to satisfy aq, together with the above two equivalences.
» Convert the equivalences to CNF:

(a1 Vv 331) AN (a1 Vv —|a2) N (—|a1 V —x, V ag)
(—|a2 \ :Bg) AN (_\a2 Vv :Eg) AN (az \Y T2 Vv _|£B3)

» The final CNF formula:
F’ = ai N (a1 Vv 581) VAN (al \Y —|a2) AN (—|a1 V —xq V az)/\
(—|a2 \Y2 1132) AN (—|a2 Vv ID3) AN ((12 V xg V _|2123)

» F is satisfiable iff F’ is satisfiable
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The Resolution Procedure

@ Applicable only to CNF formulas.

@ Observation: to satisfy clauses C1[P] and C2[—P] that share

variable P but disagree on its value, either the rest of Cy or the rest
of C's must be satisfied. Why?

@ The clause C1[L] Vv C2[Ll] (with simplification) can be added as a
conjunction to F' to produce an equivalent formula still in CNF.

@ The proof rule for clausal resolution:

C1[P] C3[-P]
Cq [J_] VvV Coy [J_]

The new clause C1[ L] V C2[L] is called the resolvent.

o If ever L is deduced via resolution, F' must be unsatisfiable.
Otherwise, if no further resolutions are possible, F' must be satisfiable.
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Examples

F:(—|PVQ)/\P/\—|Q

@ From resolution
(~PVQ) P

Q )
construct (-PV Q) A P AN —=Q A Q. From resolution
-Q  Q
1

deduce that F' is unsatisfiable.
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Examples

F:(—|PVQ)/\—|Q)

@ The resolution procedure yields
(—|PVQ)/\—|Q/\—|P

No further resolutions are possible. F' is satisfiable.

@ A satisfying interpretation:
I: {P — false, Q — false}

@ A CNF formula that does not contain the clause L and to which no
more resolutions are applicable represents all possible satisfying
interpretations.
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DPLL

@ The Davis-Putnam-Logemann-Loveland algorithm (DPLL) combines
the enumerative search and a restricted form of resolution, called unit

resolution:
l C[—l]

Cl1]
where L is a literal (I = P or I = —P).

@ The process of applying this resolution as much as possible is called
Boolean constraint propagation (BCP).
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BCP Example
F:(P)YA(-PVQ)AN(RV-QVS)

@ Apply unit resolution
P (~PVQ)

Q
to produce F’ : Q A (RV —Q V S). Applying unit resolution

Q Rv-QVS
RV S

produces F”” : R\ S, ending this round of BCP.
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DPLL
DPLL is similar to SAT, except that it begins by applying BCP:

let rec DPLL F =
let F’ = BCP(F') in
if F/ = T then true
else if F/ = L then false
else
let P = Choose(vars(F")) in
(DPLL F'{P + T}) v (DPLL F'{P s 1})
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Pure Literal Propagation (PLP)

o If variable P appears only positively or only negatively in F', remove
all clauses containing an instance of P.
» If P appears only positively (i.e. no =P in F), replace P by T.
» If P appears only negatively (i.e. no P in F), replace P by L.

@ The resulting formula F’ is equisatisfiable to F'.

@ When only such pure variables remain, the formula must be
satisfiable. A full interpretation can be constructed by setting each
variable’s value based on whether it appears only positively (true) or
only negatively (false).

Example) FF': (=PV Q) A (RV -Q V S).

@ P appears only negatively in F’

F': (R VvV Qv S)

@ R and S appear only positively in F'

F': (P Vv Q)
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DPLL with PLP

let rec DPLL F =
let F/ = PLP(BCP(F)) in
if F/ = T then true
else if F/ = L then false
else
let P = Choose(vars(F")) in
(DPLL F/'{P + T})V (DPLL F'{P — })
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Example 1

F:PAN(PVQ)A(RV-QVS)
@ Applying BCP produces
F'":RV S

@ All variables occur positively, so F' is satisfiable.

© A satisfying interpretation:

{P > true, Q > true, R > true, S — true}
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Example 2

F:(-PVQVR)A(QVR)AN(—mQV -R)AN(PV-QV -R)

@ No BCP and PLP are applicable.
@ Choose @ to branch on:

F{Q+— T}:RA(=R) A (PV =R)

The unit resolution with R and =R deduces _L, finishing this branch.
@ On the other branch for Q:

F{Q+— 1}: (=P VR)

P and R are pure, so the formula is satisfiable. A satisfying
interpretation:

I: {P > false, Q — false, R — true}
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Summary

@ Syntax and semantics of propositional logic
@ Satisfiability and validity

Equivalence, implications, and equisatisfiability
@ Substitution

@ Normal forms: NNF, DNF, CNF

°

Decision procedures for satisfiability
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