AAA528: Computational Logic Lecture 1 — Propositional Logic

Hakjoo Oh 2018 Fall

Syntax

- Atom: basic elements
 - ▶ truth symbols \perp ("false") and \top ("true")
 - propositional variables P, Q, R, ...
- Literal: an atom α or its negation $\neg \alpha$.
- Formula: a literal or the application of a logical connective (boolean connective) to formulas

$$\begin{array}{ccccc} F & \rightarrow & \bot \\ & \mid & \top \\ & \mid & P \\ & \mid & \neg F & & \text{negation (" not")} \\ & \mid & F_1 \wedge F_2 & & \text{conjunction (" and")} \\ & \mid & F_1 \vee F_2 & & \text{disjunction (" or")} \\ & \mid & F_1 \rightarrow F_2 & & \text{implication (" implies"} \\ & \mid & F_1 \leftrightarrow F_2 & & \text{iff (" if and only if")} \end{array}$$

Syntax

• Formula *G* is a **subformula** of formula *F* if it occurs syntactically within *G*.

$$\begin{aligned} \sup(\bot) &= \{\bot\}\\ \sup(\top) &= \{\top\}\\ \sup(P) &= \{P\}\\ \sup(\neg F) &= \{\neg F\} \cup \sup(F)\\ \sup(F_1 \wedge F_2) &= \{F_1 \wedge F_2\} \cup \sup(F_1) \cup \sup(F_2) \end{aligned}$$

•
$$F: (P \land Q) \rightarrow (P \lor \neg Q)$$

• $\mathsf{sub}(F) =$

• The strict subformulas of a formula are all its subformulas except itself.

Semantics

- The semantics of a logic provides its meaning. The meaning of a PL formula is either true or false.
- The semantics of a formula is defined with an **interpretation** (or assignment) that assigns truth values to propositional variables.
- For example, $F: P \land Q \rightarrow P \lor \neg Q$ evaluates to true under the interpretation $I: \{P \mapsto \mathsf{true}, Q \mapsto \mathsf{false}\}$:

P	Q	$\neg Q$	$P \wedge Q$	$P \lor \neg Q$	F
1	0	1	0	1	1

• The tabular notation is unsuitable for predicate logic. Instead, we define the semantics inductively.

Inductive Definition of Semantics

In an inductive definition, the meaning of basic elements is defined first. The meaning of complex elements is defined in terms of subcomponents.

- We write $I \vDash F$ if F evaluates to **true** under I.
- We write $I \nvDash F$ if F evaluates to **false** under I.

$$\begin{array}{lll} I \vDash \top, & I \nvDash \bot, \\ I \vDash P & \text{iff } I[P] = \mathsf{true} \\ I \nvDash P & \text{iff } I[P] = \mathsf{false} \\ I \nvDash P & \text{iff } I \models F \\ I \vDash \neg F & \text{iff } I \nvDash F \\ I \vDash F_1 \land F_2 & \text{iff } I \vDash F_1 \text{ and } I \vDash F_2 \\ I \vDash F_1 \lor F_2 & \text{iff } I \vDash F_1 \text{ or } I \vDash F_2 \\ I \vDash F_1 \to F_2 & \text{iff } I \nvDash F_1 \text{ or } I \vDash F_2 \\ I \vDash F_1 \to F_2 & \text{iff } I \nvDash F_1 \text{ or } I \vDash F_2 \\ I \vDash F_1 \leftrightarrow F_2 & \text{iff } (I \vDash F_1 \text{ and } I \vDash F_2) \text{ or } (I \nvDash F_1 \text{ and } I \nvDash F_2) \end{array}$$

Example

Consider the formula

$$F: P \land Q
ightarrow P \lor \neg Q$$

and the interpretation

$$I : \{P \mapsto \mathsf{true}, Q \mapsto \mathsf{false}\}$$

The truth value of F is computed as follows:

1.	$\boldsymbol{I}\vDash\boldsymbol{P}$	since $I[P] = true$
2.	$I \not \vDash Q$	since $I[Q] = false$
3.	$\boldsymbol{I} \vDash \neg \boldsymbol{Q}$	by 2 and semantics of \neg
4.	$I ot \! \! e P \wedge Q$	by 2 and semantics of \wedge
5.	$I \vDash P \lor \neg Q$	by 1 and semantics of \lor
6.	$\boldsymbol{I}\vDash\boldsymbol{F}$	by 4 and semantics of $ ightarrow$

Satisfiability and Validity

- A formula *F* is satisfiable iff there exists an interpretation *I* such that *I* ⊨ *F*.
- A formula F is valid iff for all interpretations I, $I \vDash F$.
- Satisfiability and validity are dual¹:

$oldsymbol{F}$ is valid iff $eg oldsymbol{F}$ is unsatisfiable

• We can check satisfiability by deciding validity, and vice versa.

 1 In logic, functions (or relations) A and B are dual if $A(x) = \neg B(\neg x)$

Deciding Validity and Satisfiability

Two approaches to show F is valid:

• Truth table method performs exhaustive search: e.g., $F: P \land Q \rightarrow P \lor \neg Q$.

P	${old Q}$	$P \wedge Q$	eg Q	$P \lor \neg Q$	F
0	0	0	1	1	1
0	1	0	0	0	1
1	0	0	1	1	1
1	1	1	0	1	1

Non-applicable to logic with infinite domain (e.g., first-order logic).

• Semantic argument method uses deduction:

- Assume F is invalid: $I \nvDash F$ for some I (falsifying interpretation).
- Apply deduction rules (proof rules) to derive a contradiction.
- ▶ If every branch of the proof derives a contradiction, then F is valid.
- If some branch of the proof never derives a contradiction, then F is invalid. This branch describes a falsifying interpretation of F.

Deduction Rules for Propositional Logic

$$\begin{split} \frac{I \vDash \neg F}{I \nvDash F} & \frac{I \nvDash \neg F}{I \vDash F} \\ \frac{I \vDash F \land G}{I \vDash F, I \vDash G} & \frac{I \nvDash F \land G}{I \nvDash F \mid I \nvDash G} \\ \frac{I \vDash F \lor G}{I \vDash F \mid I \vDash G} & \frac{I \nvDash F \lor G}{I \nvDash F, I \nvDash G} \\ \frac{I \vDash F \lor G}{I \vDash F \mid I \vDash G} & \frac{I \nvDash F \lor G}{I \nvDash F, I \nvDash G} \\ \frac{I \vDash F \leftrightarrow G}{I \nvDash F \mid I \vDash G} & \frac{I \nvDash F \leftrightarrow G}{I \vDash F, I \nvDash G} \\ \frac{I \vDash F \leftrightarrow G}{I \vDash F \land G \mid I \vDash \neg F \land \neg G} & \frac{I \nvDash F \leftrightarrow G}{I \vDash F \land \neg G \mid I \vDash \neg F \land G} \\ \frac{I \vDash F \sqcup F \lor F}{I \vDash I \vDash F} \end{split}$$

Example 1

To prove that the formula

$$F: P \wedge Q
ightarrow P ee
eg
abla Q$$

is valid, assume that it is invalid and derive a contradiction:

1.
$$I \nvDash P \land Q \rightarrow P \lor \neg Q$$
assumption2. $I \vDash P \land Q$ by 1 and semantics of \rightarrow 3. $I \nvDash P \lor \neg Q$ by 1 and semantics of \rightarrow 4. $I \vDash P$ by 2 and semantics of \land 5. $I \nvDash P$ by 3 and semantics of \lor 6. $I \vDash \bot$ 4 and 5 are contradictory

Example 2

To prove that the formula

$$F:(P
ightarrow Q)\wedge (Q
ightarrow R)
ightarrow (P
ightarrow R)$$

is valid, assume that it is invalid and derive a contradiction:

1.
$$I \nvDash F$$
assumption2. $I \vDash (P \rightarrow Q) \land (Q \rightarrow R)$ by 1 and semantics of3. $I \nvDash P \rightarrow R$ by 1 and semantics of4. $I \vDash P$ by 3 and semantics of5. $I \nvDash R$ by 3 and semantics of6. $I \vDash P \rightarrow Q$ 2 and semantics of \land 7. $I \vDash Q \rightarrow R$ 2 and semantics of \land

Two cases consider from 6:

- **1** \nvDash *I* **\nvDash ***P*: contradiction with 4.
- **2** $I \vDash Q$: two cases to consider from 7:
 - $I \nvDash Q$: contradiction
 - **2** $I \vDash R$: contradiction with 5.

 \rightarrow

 \rightarrow

Proof Tree

A proof evolves as a tree.

- A *branch* is a sequence descending from the root.
- A branch is *closed* if it contains a contradiction. Otherwise, the branch is *open*.
- It is a proof of the validity of *F* if every branch is closed; otherwise, each open branch describes a falsifying interpretation of *F*.

Exercise

Apply the semantic argument method to the formula:

 $F: P \lor Q \to P \land Q$

Derived Rules

The proof rules are sufficient, but **derived rules** can make proofs more concise. E.g., the rule of modus ponens:

$$rac{IDash F}{IDash G} rac{IDash F o G}{IDash G}$$

The proof of the validity of the formula:

$$F:(P
ightarrow Q)\wedge (Q
ightarrow R)
ightarrow (P
ightarrow R)$$

1.
$$I \nvDash F$$
assumption2. $I \vDash (P \rightarrow Q) \land (Q \rightarrow R)$ by 1 and semantics of \rightarrow 3. $I \nvDash P \rightarrow R$ by 1 and semantics of \rightarrow 4. $I \vDash P$ by 3 and semantics of \rightarrow 5. $I \nvDash R$ by 3 and semantics of \rightarrow 6. $I \vDash P \rightarrow Q$ 2 and semantics of \land 7. $I \vDash Q \rightarrow R$ 2 and semantics of \land 8. $I \vDash R$ by 4, 6, and modus ponens9. $I \vDash L$ 5 and 9 are contradictory

Equivalence and Implication

• Two formulas F_1 and F_2 are equivalent

$$F_1 \iff F_2$$

iff $F_1 \leftrightarrow F_2$ is valid, i.e., for all interpretations $I, I \vDash F_1 \leftrightarrow F_2$. • Formula F_1 implies formula F_2

$$F_1 \implies F_2$$

iff $F_1
ightarrow F_2$ is valid, i.e., for all interpretations I, $I Dash F_1
ightarrow F_2$.

- $F_1 \iff F_2$ and $F_1 \implies F_2$ are not formulas. They are semantic assertions.
- We can check equivalence and implication by checking satisfiability.

Examples

•
$$P \iff \neg \neg P$$

• $P \rightarrow Q \iff \neg P \lor Q$

Prove that

 $R \wedge (\neg R \wedge P) \implies P$

Substitution

• A substitution σ is a mapping from formulas to formulas:

$$\sigma: \{F_1 \mapsto G_2, \dots, F_n \mapsto G_n\}$$

• The domain of σ , $\operatorname{dom}(\sigma)$, is

$$\mathsf{dom}(\sigma):\{F_1,\ldots,F_n\}$$

while the range $\mathsf{range}(\sigma)$ is

$$\operatorname{range}(\sigma): \{G_1, \ldots, G_n\}$$

- The application of a substitution σ to a formula F, $F\sigma$, replaces each occurence of F_i with G_i . Replacements occur all at once.
- When two subformulas F_j and F_k are in $dom(\sigma)$ and F_k is a strict subformula of F_j , then F_j is replaced first.

Example

Consider formula

$$F: P \wedge Q \to P \vee \neg Q$$

and substitution

$$\sigma: \{P \mapsto R, P \land Q \mapsto P \to Q\}$$

Then,

$$F\sigma:(P\to Q)\to R\vee\neg Q$$

Note that $F\sigma \neq (R \rightarrow Q) \rightarrow R \lor \neg Q$.

Substitution

- A variable substitution is a substitution in which the domain consists only of propositional variables.
- When we write $F[F_1, \ldots, F_n]$, we mean that formula F can have formulas F_1, \ldots, F_n as subformulas.
- If σ is $\{F_1\mapsto G_1,\ldots,F_n\mapsto G_n\}$, then

$$F[F_1,\ldots,F_n]\sigma:F[G_1,\ldots,G_n]$$

• For example, in the previous example, writing

$$F[P,P\wedge Q]\sigma:F[R,P
ightarrow Q]$$

emphasizes that P and $P \wedge Q$ are replaced by R and $P \rightarrow Q$, respectively.

Semantic Consequences of Substitution

Lemma (Substitution of Equivalent Formulas)

Consider substitution $\sigma : \{F_1 \mapsto G_1, \dots, F_n \mapsto G_n\}$ such that for each $i, F_i \iff G_i$. Then, $F \iff F\sigma$.

For example, applying $\sigma : \{P \to Q \mapsto \neg P \lor Q\}$ to $F : (P \to Q) \to R$ produces $(\neg P \lor Q) \to R$ that is equivalent to F.

Lemma (Valid Template)

If F is valid and $G = F\sigma$ for some variable substitution σ , then G is valid.

For example, because $F : (P \to Q) \leftrightarrow (\neg P \lor Q)$ is valid, every formula of the form $F_1 \to F_2$ is equivalent to $\neg F_1 \lor F_2$, for arbitrary formulas F_1 and F_2 .

Proving the validity of F actually proves the validity of an infinite set of formulas: those that can be derived from F via variable substitution.

Composition of Substitutions

Given substitutions σ_1 and σ_2 , their composition $\sigma = \sigma_1 \sigma_2$ ("apply σ_1 and then σ_2 ") is computed as follows:

- Apply σ_2 to each formula of the range of σ_1 , and add the results to σ_1 .
- 2 If F_i of $F_i \mapsto G_i$ appears in the domain of σ_2 but not in the domain of σ_1 , then add $F_i \mapsto G_i$ to σ .

For example,

4

$$egin{aligned} &\sigma_1\sigma_2: \{P\mapsto R, P\wedge Q\mapsto P o Q\}\{P\mapsto S, S\mapsto Q\}\ &=\{P\mapsto R\sigma_2, P\wedge Q\mapsto (P o Q)\sigma_2, S\mapsto Q\}\ &=\{P\mapsto R, P\wedge Q\mapsto S o Q, S\mapsto Q\} \end{aligned}$$

Normal Forms

A normal form of formulas is a syntactic restriction such that for every formula of the logic, there is an equivalent formula in the normal form. Three useful normal forms in logic:

- Negation Normal Form (NNF)
- Disjunctive Normal Form (DNF)
- Conjunctive Normal Form (CNF)

Negation Normal Form (NNF)

- NNF requires that ¬, ∧, and ∨ are the only connectives (i.e., no → and ↔) and that negations appear only in literals.
 - $\blacktriangleright \ P \land Q \land (R \lor \neg S)$
 - $\neg P \lor \neg (P \land Q))$
 - $\neg \neg P \land Q$
- Transforming a formula *F* to equivalent formula *F'* in NNF can be done by repeatedly applying the following list of template equivalences:

Exercise

Convert $F : \neg (P \rightarrow \neg (P \land Q))$ into NNF.

Disjunctive Normal Form (DNF)

• A formula is in disjunctive normal form (DNF) if it is a disjunction of conjunctive clauses (conjunctions of literals):

$$\bigvee_i \bigwedge_j l_{i,j}$$

• To convert a formula *F* into an equivalent formula in DNF, transform *F* into NNF and then distribute conjunctions over disjunctions:

$$egin{array}{ccc} (F_1 ee F_2) \wedge F_3 & \Longleftrightarrow & (F_1 \wedge F_3) ee (F_2 \wedge F_3) \ F_1 \wedge (F_2 ee F_3) & \iff & (F_1 \wedge F_2) ee (F_1 \wedge F_3) \end{array}$$

Exercise

To convert

$$F:(Q_1 \lor \neg \neg Q_2) \land (\neg R_1 o R_2)$$

into DNF,

- first transform it into NNF:
- then apply distributivity:

Conjunctive Normal Form (CNF)

• A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses (i.e. conjunctions of disjunctions of literals):

$$\bigwedge_i \bigvee_j l_{i,j}$$

• To convert a formula *F* into an equivalent formula in DNF, transform *F* into NNF and distribute disjunctions over conjunctions:

• Exercise) Convert $F:(Q_1 \land \neg \neg Q_2) \lor (\neg R_1 \to R_2)$ into CNF.

Decision Procedures

- A decision procedure decides whether *F* is satisfiable after some finite steps of computation.
- Approaches for deciding satisfiability:
 - **Search**: exhaustively search through all possible assignments
 - Deduction: deduce facts from known facts by iteratively applying proof rules
 - Combination: Modern SAT solvers are based on DPLL that combines search and deduction in an effective way

Exhaustive Search

• The recursive algorithm for deciding satisfiability:

```
let rec SAT F =

if F = \top then true

else if F = \bot then false

else

let P = \text{Choose}(\text{vars}(F)) in

(SAT F\{P \mapsto \top\}) \lor (\text{SAT } F\{P \mapsto \bot\})
```

When applying F{P → T} and F{P → ⊥}, the resulting formulas should be simplified using template equivalences on PL.

Example

$$F:(P
ightarrow Q)\wedge P\wedge
eg Q$$

• Choose variable $oldsymbol{P}$ and

$$F\{P\mapsto op\}: (op \to Q) \land op \land op Q$$

which simplifies to

$$F_1: Q \wedge \neg Q$$

$$F_1\{Q \mapsto \top\} : \bot$$
$$F_1\{Q \mapsto \bot\} : \bot$$

• Recurse on the other branch for **P** in **F**:

$$F\{P\mapsto \bot\}:(\bot o Q)\wedge \bot \wedge \neg Q$$

which simplifies to \perp .

• All branches end without finding a satisfying assignment.

$$F:(P
ightarrow Q)\wedge
eg P$$

• Choose *P* and recurse on the first case:

$$F\{P\mapsto \top\}: (\top o Q) \land \neg T$$

which is equivalent to \perp .

• Try the other case:

$$F\{P \to \bot\}: (\bot \to Q) \land \neg \bot$$

which is equivalent to \top .

• Arbitrarily assigning a value to *Q* produces the satisfying interpretation:

```
I: \{P \mapsto \mathsf{false}, Q \mapsto \mathsf{true}\}.
```

Equisatisfiability

- SAT solvers convert a given formula F to CNF.
- Conversion to an equivalent CNF incurs exponential blow-up in worst-case.
- **F** is converted to an equisatisfiable CNF formula, which increases the size by only a constant factor.
- F and F' are equisatisfiable when F is satisfiable iff F' is satisfiable.
- Equisatisfiability is a weaker notion of equivalence, which is still useful when deciding satisfiability.

Conversion to an Equisatisfiable Formula in CNF

- Idea: Introduce new variables to represent the subformulas of *F* with extra clauses that assert that these new variables are equivalent to the subformulas that they represent.
- $F: x_1 \rightarrow (x_2 \wedge x_3)$
 - Introduce two variables a_1 and a_2 with two equivalences:

$$egin{array}{rcl} a_1 & \leftrightarrow & (x_1
ightarrow a_2) \ a_2 & \leftrightarrow & (x_2 \wedge x_3) \end{array}$$

We need to satisfy a_1 , together with the above two equivalences.

Convert the equivalences to CNF:

The final CNF formula:

$$F'=a_1\wedge (a_1ee x_1)\wedge (a_1ee \neg a_2)\wedge (\neg a_1ee \neg x_1ee a_2)\wedge (\neg a_2ee x_2)\wedge (\neg a_2ee x_3)\wedge (a_2ee \neg x_2ee \neg x_3)$$

F is satisfiable iff F' is satisfiable

The Resolution Procedure

- Applicable only to CNF formulas.
- Observation: to satisfy clauses $C_1[P]$ and $C_2[\neg P]$ that share variable P but disagree on its value, either the rest of C_1 or the rest of C_2 must be satisfied. Why?
- The clause $C_1[\bot] \lor C_2[\bot]$ (with simplification) can be added as a conjunction to F to produce an equivalent formula still in CNF.
- The proof rule for clausal resolution:

$$\frac{C_1[P] \quad C_2[\neg P]}{C_1[\bot] \lor C_2[\bot]}$$

The new clause $C_1[\bot] \lor C_2[\bot]$ is called the **resolvent**.

If ever ⊥ is deduced via resolution, F must be unsatisfiable.
 Otherwise, if no further resolutions are possible, F must be satisfiable.

Examples

$$F:(
eg P \lor Q) \land P \land
eg Q$$

• From resolution $\frac{(\neg P \lor Q) \quad P}{Q},$ construct $(\neg P \lor Q) \land P \land \neg Q \land Q.$ From resolution $\frac{\neg Q \quad Q}{\bot}$

deduce that F is unsatisfiable.

Examples

$$F:(\neg P\vee Q)\wedge \neg Q)$$

• The resolution procedure yields

$$(\neg P \lor Q) \land \neg Q \land \neg P$$

No further resolutions are possible. F is satisfiable.

• A satisfying interpretation:

$$I: \{P \mapsto \mathsf{false}, Q \mapsto \mathsf{false}\}$$

 A CNF formula that does not contain the clause ⊥ and to which no more resolutions are applicable represents all possible satisfying interpretations.

DPLL

• The Davis-Putnam-Logemann-Loveland algorithm (DPLL) combines the enumerative search and a restricted form of resolution, called **unit resolution**:

$$rac{l \quad C[\neg l]}{C[\bot]}$$

where l is a literal $(l = P \text{ or } l = \neg P)$.

• The process of applying this resolution as much as possible is called **Boolean constraint propagation (BCP)**.

BCP Example

$$F:(P)\wedge (
eg Pee Q)\wedge (Ree
eg Vee S)$$

$$rac{P \qquad (
eg P \lor Q)}{Q}$$

to produce $F': Q \land (R \lor \neg Q \lor S)$. Applying unit resolution

$$rac{Q}{R ee S} rac{R ee \neg Q ee S}{R ee S}$$

produces $F'': R \lor S$, ending this round of BCP.

DPLL

DPLL is similar to SAT, except that it begins by applying BCP:

```
let rec DPLL F =

let F' = BCP(F) in

if F' = \top then true

else if F' = \bot then false

else

let P = Choose(vars(F')) in

(DPLL F'\{P \mapsto \top\}) \lor (DPLL F'\{P \mapsto \bot\})
```

Pure Literal Propagation (PLP)

- If variable *P* appears only positively or only negatively in *F*, remove all clauses containing an instance of *P*.
 - If P appears only positively (i.e. no $\neg P$ in F), replace P by \top .
 - If P appears only negatively (i.e. no P in F), replace P by \perp .
- The resulting formula F' is equisatisfiable to F.
- When only such pure variables remain, the formula must be satisfiable. A full interpretation can be constructed by setting each variable's value based on whether it appears only positively (true) or only negatively (false).

Example)
$$F: (\neg P \lor Q) \land (R \lor \neg Q \lor S).$$

ullet ullet appears only negatively in $oldsymbol{F}$

$$F':(R\vee \neg Q\vee S)$$

ullet $oldsymbol{R}$ and $oldsymbol{S}$ appear only positively in $oldsymbol{F}$

$$F':(\neg P \lor Q)$$

DPLL with PLP

```
let rec DPLL F =

let F' = PLP(BCP(F)) in

if F' = \top then true

else if F' = \bot then false

else

let P = Choose(vars(F')) in

(DPLL F'\{P \mapsto \top\}) \lor (DPLL F'\{P \mapsto \bot\})
```

Example 1

$$F: P \land (\neg P \lor Q) \land (R \lor \neg Q \lor S)$$

 $F'': R \lor S$

- **2** All variables occur positively, so F is satisfiable.
- **3** A satisfying interpretation:

```
\{P \mapsto \mathsf{true}, Q \mapsto \mathsf{true}, R \mapsto \mathsf{true}, S \mapsto \mathsf{true}\}
```

Example 2

 $F: (
eg P \lor Q \lor R) \land (
eg Q \lor R) \land (
eg Q \lor
eg R) \land (
eg Q \lor
eg R) \land (P \lor
eg Q \lor
eg R)$

- No BCP and PLP are applicable.
- Choose Q to branch on:

$$F\{Q\mapsto op\}: R\wedge (\neg R)\wedge (P\vee \neg R)$$

The unit resolution with R and $\neg R$ deduces \bot , finishing this branch. • On the other branch for Q:

$$F\{Q\mapsto \bot\}:(\neg P\vee R)$$

 \boldsymbol{P} and \boldsymbol{R} are pure, so the formula is satisfiable. A satisfying interpretation:

$$I : \{ P \mapsto \mathsf{false}, Q \mapsto \mathsf{false}, R \mapsto \mathsf{true} \}$$

Summary

- Syntax and semantics of propositional logic
- Satisfiability and validity
- Equivalence, implications, and equisatisfiability
- Substitution
- Normal forms: NNF, DNF, CNF
- Decision procedures for satisfiability