MEemFix: Static Analysis-Based Repair of Memory Deallocation
Errors for C

Junhee Lee
Korea University
Republic of Korea
junhee_lee@korea.ac.kr

ABSTRACT

We present MEMFIX, an automated technique for fixing memory
deallocation errors in C programs. MEMFIX aims to fix memory-leak,
double-free, and use-after-free errors, which occur when developers
fail to properly deallocate memory objects. MEMFIxX attempts to
fix these errors by finding a set of free-statements that correctly
deallocate all allocated objects without causing double-frees and
use-after-frees. The key insight behind MEMFIX is that finding such
a set of deallocation statements corresponds to solving an exact
cover problem derived from a variant of typestate static analysis.
We formally present the technique and experimentally show that
MEMFIX is able to fix real errors found in open-source programs.
Because MEMFIx is based on a sound static analysis, the generated
patches guarantee to fix the original error without introducing new
errors.

CCS CONCEPTS

« Software and its engineering — Software verification and
validation; Software testing and debugging;
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1 INTRODUCTION

In programming languages like C and C++, memory-deallocation
errors occur when dynamically allocated objects are not deallocated
properly. Because these languages entrust memory management to
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Table 1: The number of commits that mention memory leak,
double-free, use-after-free, and buffer/integer-overflow.

Repo. #commits ML DF UAF Total *-overflow

linux 721,119 3,740 821 1,986 6,363 5,092
php 105,613 1,129 148 197 1,449 649
git 49,475 350 19 95 442 258
openssl 21,009 220 36 12 264 61

developers, all unused objects must be manually identified and deal-
located. Unfortunately, this manual memory-management likely
ends up with three types of common errors: a programmer may
forget to deallocate an object (memory-leak), may deallocate an
object more than once (double-free), or may deallocate an object
too early even before it is used (use-after-free).

Memory-leak (ML), double-free (DF), and use-after-free (UAF)
are one of the most troubling errors in C programs. For exam-
ple, they are prevalent in popular open-source software projects
(Table 1), even more common than buffer- and integer-overflow.
Each of those errors must be carefully examined and fixed because
otherwise they become significant sources of security vulnerabili-
ties [5, 53]: memory-leak (CWE-401) may cause a denial of service
attack, and double-free (CWE-415) and use-after-free (CWE-416)
may allow an unprivileged user to execute arbitrary code. For ex-
ample, vulnerabilities CVE-2017-10810, CVE-2017-6353, and CVE-
2017-8824 recently found in Linux kernel are due to ML, DF, and
UAF, respectively.

However, manually fixing memory deallocation errors is time-
consuming and error-prone even for experienced developers. Cor-
rectly fixing a memory-leak, for example, requires a developer to
examine not only the leaky path but also every single path from
the source to target, because inserting a deallocation statement
in one path may introduce double-free or use-after-free errors in
other paths. As a result, it is common in practice for human-written
patches only to introduce new errors and the original error gets
fixed after multiple rounds of incorrect patches (e.g., see Section 2.1).

In this paper, we present MEMFIX, an automated technique for
fixing memory deallocation errors in C programs. Given a buggy
program, MEMFIX aims to repair the program by finding a set of
deallocation statements that correctly deallocate all allocated mem-
ory objects without causing double-frees and use-after-frees. We
show that finding such a set of deallocation statements is essentially
to solve an exact cover problem [13] that can be derived by a static
analysis. The static analysis is a variant of type-state analysis [14],
which tracks possible deallocation statements for each object. Find-
ing an exact cover is a well-known NP-complete problem, for which
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we use an off-the-shelf SAT solver. Because MEMFIX is based on
a sound static analysis, the MEMFIx-generated patches are guar-
anteed to correctly fix the target error without introducing new
errors that are absent in the original program.

The experimental results demonstrate that MEMFIx is able to fix
various errors in open-source C programs. We evaluated MEMFIx
with three different benchmark sets: Juliet Test Suite, GNU Core-
utils, and a set of model programs that contain real errors found
in popular C repositories. For Juliet Test Suite, MEMFIx was able
to fix all errors related to memory leak, double-free, and use-after-
free. For Coreutils, MEMFIx automatically repaired all deallocation
errors in 12 out of 24 programs. For 100 model programs from open-
source repositories, MEMFIx was able to generate patches for 37
cases. We show that these results represent a significant advance
over the state-of-the-art by comparing MEmF1x with LeakFix [15],
a recently developed tool for fixing memory leaks in C programs.

Contributions. This paper makes the following contributions:

e We present MEMFIX, a unified algorithm for fixing memory-
leak, double-free, and use-after-free errors in C programs.
The key technical novelty is the use of static analysis to
derive an exact cover problem whose solution corresponds
to a correct patch for memory deallocation errors.

e We provide experimental evaluation of MEMFIx with three
benchmark sets of open-source C programs. We compare its
performance with the state-of-the-art tool, LeakFix [15].

e We make the tool and benchmarks publicly available.!. In
particular, we provide a new benchmark set, comprising 100
test programs (55-664 LoC), which was abstracted from real
errors reported in open-source C repositories.

2 OVERVIEW

In this section, we motivate and illustrate MEMFIx with examples.

2.1 Motivating Example

Figure 1 illustrates how a double-free error found in Linux kernel
gets fixed by a developer and MEmF1x. The original buggy code in
Figure 1(a) is eventually fixed in Figure 1(d) through three rounds
of patches, taking 10 months in total. Figure 1(e) shows the patch
generated by MEMF1x. We simplified code for presentation.

Original Code. The original code in Figure 1(a) has two double-
free errors. At lines 1-5, buffers in and out are allocated, used,
and deallocated. At lines 7 and 13, in and out are re-allocated with
increased size. Double-frees would occur when these buffers fail to
get re-allocated. For example, when malloc fails and returns NULL at
line 7, the program control is transferred to the error handling code
at line 20, where free is called on out that is already deallocated
at line 4. Similarly, when malloc at line 13 fails, in is deallocated
twice at lines 15 and 21.

First Patch. Figure 1(b) shows the initial patch made by a devel-
oper.” To prevent double-frees, the developer nullified the buffers
at lines 9 and 16. As a result, when in or out fail to get re-allocated,
they are assigned NULL so that the subsequent calls to free are safe.

!https://prlkorea.ac.kr/MemFix
Zhttps://github.com/torvalds/linux/commit/ed6590a
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This is a correct fix although it is not ideal. It is not ideal because
the fix just avoids the errors without eliminating their root causes.
That is, the double-free patterns are still present in Figure 1(b): along
the path 15 — 17 — 21, buffer in is deallocated twice. Similarly,
along the path4 — 10 — 22, free is called on out consecutively. To
avoid double-frees along those paths, the developer simply nullified
the buffers in-between the consecutive frees instead of removing
the problematic patterns.

Second Patch. Indeed, the developer got confused in under-
standing the code and thought that a double-free is still present
in the code.® To “fix” this imaginary bug, (s)he moved free(out)
at line 4 to line 12, right before the re-allocation of out. This is a
more desirable place for free(out) as it eliminates the double-free
pattern for out, making the code simpler to understand. However,
this change introduced a new memory-leak error. Note that, when
buffer in fails to get allocated at line 7, out is nullified (line 9), so
the object that out points to is no longer reachable.

Third Patch. This memory leak was reported by another de-
veloper and the original developer patched the code once again,
as shown in Figure 1(d).* To fix the leak, the developer moved
free(out) at line 12 back to its original place (line 4). Also, the de-
veloper nullified out at line 6 to prevent the imaginary double-free
that (s)he thinks was introduced by the first patch. The resulting
code is error-free. However, it became even more redundant and
confusable than the first patch in Figure 1(b).

Patch by MEMF1x. Figure 1(e) shows the fix made by MEMFIX.
To fix the double-free errors in the original code (Figure 1(a)),
MEMFIxX eliminated their root causes with two simple changes:
it removed free(in) from line 15 and moved free(out) from line
4 to 12. The idea is to deallocate buffers right before they get re-
allocated, which is the simplest patch for the original code. The
generated patch is instructive for a developer to better understand
how the problem can be fixed. Furthermore, because MEMFIX is
sound and formally ensures that the generated patch is correct, it
frees the developer from the error-prone task of manually verifying
the correctness of the patch.

2.2 Overview of MEMF1x

We illustrate the algorithm of MEMFIX using a simple example in
Figure 2. The code in Figure 2(a) has a double-free error, which
occurs along the lines 1 — 7 — 9 — 10. At line 1, an object
(denoted o01) is allocated and stored in pointer p. At line 7, both q
and p refer to the same object (01) that is later deallocated twice at
lines 9 and 10, causing a double-free. Our technique fixes this error
by moving free(p) at line 10 to line 4, as shown in Figure 2(b).
MEemF1x works with two key ideas: 1) we use a static analysis
that collects patch candidates for each allocated object, and 2) we
reduce the problem of finding a correct patch into an exact cover
problem over allocated objects. We explain these steps below.

Static Analysis for Collecting Patch Candidates. We first
analyze the code to collect patch candidates. The control-flow graph
and analysis results at each node are presented in Figure 3. The

Shttps://github.com/torvalds/linux/commit/df3e1ab7
*https://github.com/torvalds/linux/commit/852fef69
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1

15 free(in); 15 free(in); 15 free(in);
16 16 in = NULL; // + 16 in = NULL;
17 goto err; 17 goto err; 17 goto err;
18} 18} 18}
19 . // use in, out 19 19
20 err: 20 err: 20 err:
21 free(in); 21 free(in); 21 free(in);
22 free(out); 22 free(out); 22 free(out);
23 return; 23 return; 23 return;
(a) Original code (b) First patch (2007.9) (c) Second patch (2008.6)
(double-free) (correct) (memory-leak)

in = malloc(1);
out = malloc(1);

. // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

goto err;

}

out = malloc(2);
if (out == NULL) {

in = malloc(1);
out = malloc(1);

free(out);
free(in);

in = malloc(2);

if (in == NULL) {
out = NULL; // +
goto err;

}

out = malloc(2);
if (out == NULL) {

1

in = malloc(1);

out = malloc(1);

// -

free(in);

in = malloc(2);

if (in == NULL) {
out = NULL;
goto err;

}

free(out); // +

out = malloc(2);
if (out == NULL) {

22

23

in = malloc(1);
out = malloc(1);

free(out); // +
free(in);
out = NULL; // +
in = malloc(2);
if (in == NULL) {
out = NULL;
goto err;
}
// -
out = malloc(2);
if (out == NULL) {
free(in);
in = NULL;
goto err;

}

err:
free(in);
free(out);
return;

(d) Third patch (2008.7)

(correct)

1

22

23
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in = malloc(1);
out = malloc(1);
// -

free(in);

in = malloc(2);
if (in == NULL) {

goto err;
}
free(out); // +
out = malloc(2);
if (out == NULL) {
s

goto err;

}

err:
free(in);
free(out);
return;

(e) Fix by MEMF1x
(correct)

Figure 1: (a) Original buggy code. (b)-(d) A series of patches made by a developer. (e) Fix by our technique.

1 p = malloc(1); // ol 1 p = malloc(1);
: if (L) { 2 if (L.0) {
3 q = malloc(1); // o2 3 q = malloc(1);
4 4 free(p); // +
5} 5}
6 else s else
7 q=p; 7 q=p;
8 ... =*q; // use q 8 .= %q;
s free(q); s free(q);
10 free(p); // double-free 0 // -
(a) Buggy code (b) Fixed code

Figure 2: Example for illustrating our technique.

analysis is a variant of typestate analysis [14], which maintains
points-to and patch information for each allocated object as a tuple
of the following form”:

(o, must, mustNot, patch, patchNot)

where o is an object represented by its allocation-site, must is a
set of pointers that must point-to o, mustNot is a set of pointers
that definitely do not point-to o, patch is a set of patches that are
guaranteed to safely deallocate the object, and patchNot is a set
of potentially unsafe patches. We call the tuple an object state. For

>In this overview, we simplified the object representation for brevity. See Section 3.2
for the complete representation.

example, the analysis computes the following tuple after line 1:

(o1, {p}, 0, {(1,p)}, 0} (1)

At the first line, an object 07 is allocated and pointer p points-to that
object. A patch is a pair (n, e) of a program location (n) and a pointer
expression (e), which denotes a deallocation statement, free(e),
at line n. For example, the safe patch (1, p) in the object state above
indicates that we can deallocate the object 01 by inserting free(p)
after line 1. Right now, mustNot and patchNot are empty.

At line 3, a new object (02) is allocated and the existing object
states get updated as follows:

{<02’ {q}7 07 {(3’ q)}7 0)7 <01’ {P}, {q}7 {(LP)’ (3’10)}70)} (2)

The first tuple denotes the new object allocated at line 3: the
allocation-site is 0z, g points-to 02, and we can safely deallocate 0y
at line 3 via free(q). Note that allocating object 02 may change the
state of object 01: since g definitely no longer point-to o1, we add q
to the mustNot set of 01. Also, patch of 01 includes (3, p) as well as
(1, p) because it is safe to deallocate o; at line 1 or 3 via free(p).

Next, consider the false branch (line 7), where the analysis main-
tains the information for object o; as follows:

{{o1,{p. g1, 0. {(1,p), (7.p), (7, )}, 0)} 3

Because of the copy statement q = p, both q and p point-to 0. The
object can be deallocated with either free(p) or free(q) after the
statement (line 7).
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’1: p = malloc(1) ‘ {{o1, {p},

0,{(1.p)},0)}

<017 {p}’ {q}’ {(l’p)7 (3’p)}’ (Z))

{ (02.19).0.{(3.9)).0). } [3:q = malloc(D)]

{<01, {P’ q}’ 07 {(LP), (7,P), (77 q)}9 0)}

71 =402, {q}, 0, {(8.9)}. {3, ) ).
12 = {01, {p} {q}, {(1,p), (3, p), (8, )}, 0),
73 = {01, {p, 4}, 0, {(8,p), 8, 9)}, {(1, p), (7. p), (7, ) })

Figure 3: Static analysis for collecting patch candidates

At the join point (before we analyze line 8), the analysis results

from both branches, i.e., (2) and (3), are combined:
(02, {q},0.{(3,9)}. 0),
{ <01’ 7{q {(1’P),(3ap)},0>, } (4)
(01, {p. g}, 0,{(1,p), (7.p), (7. 9)}, )

Note that our analysis is disjunctive and maintains object states
separately for each different branch unless the resulting states are
the same. The second and last tuples denote the states of the object
o1 that follow the true and false branches, respectively.

With the states in (4) as input, the analysis produces the following
states as output after line 8:

71 = {02, { (8 DLAG. 9D,

{ 2—(01, A(1.p). (3.p). (8.p)1.0), } ©)
73 = (01, p, 0.1(8.p), (8. 9)} {(1,p), (7.p), (7. 9)})
Because g is used at line 8, the existing patches for the objects
that can be referenced by g are no longer safe (i.e., potential use-
after-free). Thus, we remove the patch candidates from the states
and declare them as unsafe. For example, consider the first state in
(4), i.e., (02, {q},0,{(3, q)}, 0), whose object can be referenced by q.
We remove (3, q) from patch to patchNot. Also, we indicate that a
new patch (8, q) is safe after line 8, yielding 71 in (5). Similarly, 73
in (5) is obtained by removing the existing patches and adding new
patches ((8,p) and (8, q)) since g points-to o;. Note that, however,
the existing patches of the second tuple in (4) remain the same
because in this case g definitely does not point-to 0; and therefore

the corresponding object cannot be used.

The analysis finishes with the object states in (5). All deallocation
statements in the original code are ignored during analysis.

Finding Correct Patches by Solving Exact Cover Problem.
Once we collect all object states as well as their patch candidates,
we try to find a set of patches that correctly deallocate all object
states (i.e., no memory leaks) while not introducing double-frees
and use-after-frees.

We find the correct patches by reducing the problem into an

exact cover problem as follows. From the analysis results in (5), we
first collect the safe and unsafe patches across all object states:

Safe = {(1,p),(3,p),(8,p).(8,9)}
UnSafe = {(l!p)’ (3’ CI), (77P)’ (7’ q)}

Candidate patches are those in Safe but not in Unsafe:
Cand = Safe \ Unsafe = {(3,p), (8,p), (8,9)}.

These are possible patches that do not cause use-after-free errors.
However, using all of them may cause double-frees. We have to find

a subset of the candidate patches that does not introduce double-
frees while deallocating all object states, which corresponds to
solving an exact cover problem represented by the following inci-
dence matrix:
RS
Gplo 1 o
@Gp o 1 1
@Bq |1 0 1

The matrix has one row for each element of Cand and one col-
umn for each state in (5). The entry in row ¢ and column 7 is 1
if patch c is a safe patch for state 7 (i.e., ¢ is included in patch
of 7) and 0 otherwise. For example, 71 contains (8, q) in patch, so
the entry in row (8, g) and column 7; is 1. Then, we aim to select
rows such that each column is contained in exactly one selected
row. In the example, {(3,p), (8, q)} is the solution, as highlighed
above, that covers all states (hence no memory leaks) and each
state is covered by at most one patch (no double-frees). The exact
cover problem is NP-complete [13]. We solve the problem by encod-
ing it as boolean satisfiability and leveraging an off-the-shelf SAT
solver [20]. MEMFIx is able to fix the bug iff the boolean formula is
satisfiable.

Applying the generated patch {(3, p), (8, )} to the original buggy
code is easy. We first remove all deallocation statements from the
code in Figure 2(a) and then insert free(p) after line 3 and free(q)
after line 8, resulting in the code in Figure 2(b).

3 THE MEMFIX ALGORITHM

Now, we formally present MEMFI1x. Section 3.1 defines a core lan-
guage. Section 3.2 describes the first step of MEMFIX, the patch-
collecting static analysis. The second step, choosing a set of correct
patches by solving an exact cover problem, is described in Sec-
tion 3.3.

3.1 Language

We formalize MEMFIX on top of a simple pointer language. Let P
be a program to repair. We represent the program by a control flow
graph (C, <, ce, cx), where C denotes the set of program points,
(=) € C x C denotes the control flow of the program, ¢; < ¢
meaning that c; is a predecessor node of ¢y, c, is the entry node,
and cy is the exit node of the program. The entry and exit nodes are
unique. Each program point is associated with a command defined
by the following grammar:

p = x| xx,

cmd — set(p, e) | alloc(p) | free(p), e — p | null



Static-Analysis-Based Repair of Memory Deallocation Errors

A pointer expression (p) is either a variable (x) or its dereference
(*x). An expression is a pointer expression or null. A command
is an assignment (set(p, e)), an allocation statement (alloc(p)), or
a deallocation statement (free(p)). alloc(p) creates a new object
pointed to by p. free(p) deallocates the object that p points to. Let
Var be the finite set of program variables in P. Let AllocSite C C
be the finite set of allocation-sites, i.e., nodes whose associated
commands are allocation statements, in P. We write cmd(c) for
the command associated with c. For simplicity, we describe our
algorithm with the simple language. Extending the algorithm to
support other C features such as procedure calls and structures
introduces no new foundational ideas.

3.2 Collecting Patches via Static Analysis

The first step of MEMFIX is to analyze the program to collect patch
candidates. The analysis is a variant of typestate analysis [14],
which aims to identify the set of possible patches for each allocated
object. We assume the basic knowledge of the abstract interpreta-
tion framework [10].

3.2.1  Abstract Domain. Our analysis is flow-sensitive and disjunc-
tive; that is, it computes a set of object states for each program point.
The abstract domain D of the analysis is defined as a function from
program points to sets of reachable object states: D = C — P(S).
An object state s € S describes an abstract object and is represented
by a tuple of the form:

{0, may, must, mustNot, patch, patchNot)

where o € AllocSite is the allocation-site of the object, may C AP
is a set of access paths that may point-to the object, must C AP is
a set of access paths that must point-to the object, mustNot C AP
is a set of access paths that definitely does not point-to the object,
patch C C x AP is a set of patches that can safely deallocate the
object, and patchNot C Cx AP is a set of potentially unsafe patches.

AP denotes the set of pointer access paths that can be generated
for the given program. For the language in Section 3.1, AP is equiva-
lent to the set of pointer expressions (p), i.e., AP = {x, *x | x € Var},
which is finite. When pointer expressions are unbounded, we ap-
proximate AP to be finite by limiting the length of the access
paths [14].

A patch is a pair (c,p) € C X AP, consisting of a program point
c and an access path p. A patch (c,p) represents a deallocation
statement, free(p), positioned right after the program point c.

Our abstract domain is similar to that of the typestate analysis by
Fink et al. [14]. Both analyses represent an abstract object with the
must and must-not point-to sets. Key difference, however, is that
we further distinguish object states with safe and unsafe patches,
as opposed to the typestate of the object used by Fink et al. [14].

During analysis, the following invariants are maintained in any
object state: 1) may includes must but excludes mustNot, i.e., may 2
must A may N mustNot = 0; and 2) patch and patchNot are disjoint,
i.e., patch N patchNot = (.

3.2.2  Abstract Semantics. The abstract semantics is defined as the
least fixed point IfpF € D of the semantics function F € D — D:

FOO) = 2e. fo || x(e)

c’—c
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where X € Dand f. : P(S) — P(S) denotes the abstract semantics
of the command associated with the program point c:

s’ if emd(c) = set(lv, e)
S U {{c, {x}, {x},0,{(c,x)},0)} if cmd(c) = alloc(x)
S if cmd(c) = free(lv)

We will define S’ shortly. Note that a new object state is created
from an allocation statement: the allocation-site is the current pro-
gram point c, the object is definitely pointed to by x, and the only
safe patch available is (c, x). Note also that the analysis ignores
deallocation statements, which has the effect of removing them
from the program prior to the analysis.

The set S’ is defined with two transfer functions 7. and ¢@.:

" =0 g)s).

seS

fc(S) =

The transfer functions 7. : S — S and ¢, : S — S update the patch
and points-to sets of an object state, respectively. Manipulating
the patch information (i.e., 7.) is new but handling the must and
must-not access paths (i.e., ¢.) is common in typestate analysis
(e.g., [14]). We first define the transfer function 7. below. Given an
object state at the program point ¢

s = (o, may, must, mustNot, patch, patchNot),
7 updates the patch information as follows:
1c(s) = (o, may, must, mustNot, patch’, patchNot")

teh! = G\ patchNot’
pateh = (patch U G) \ patchNot’

o can be used at ¢
o0 is not used at ¢

patchNot U U U patch o can be used at ¢

/ _
patchNot” = { patchNot U U U D o0 is not used at ¢

where the sets G, U, and D are defined below.

o G is the set of patches that are newly generated at c:
G ={(c,p) | p € must}.

When an access path p definitely points-to the object, we
can use the access path to deallocate the object by inserting
free(p) at c. Thus, patch’ always includes G. If the object o
is not used at c, patch’ preserves patch but, when o can be
used at ¢, patch’ does not include patch because the existing
patches (patch) might cause use-after-free errors and no
longer guarantee the safety. Finally, we exclude patchNot’
from the resulting sets in order to ensure the invariant that
patch’ and paichNot’ are disjoint.

o U is the set of patches that we cannot guarantee the safety:

U ={(c,p) | p € may\ must}.

These patches may be unsafe because p may point to the
object at runtime. Thus, we include them in patchNot'.
e D is the set of patches that potentially cause double-frees:

D = patchN G

which should be included in patchNot’. We detect double-
frees by checking whether the generated patch (c,p) € G
already exists in the current safe patches (patch). If so, the
deallocation free(p) at ¢ can be executed more than once,
causing a double-free. When the object is used at c, we also
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add the set of patches that may cause use-after-frees (i.e.,
patch). Note that patch is a superset of D.

Next we define the transfer function ¢, that updates the points-
to sets. We assume that may-point-to, may-alias, and must-alias
analyses are available through the following functions:

e mayptsto € C X AP — P (AllocSite): Given a program point
¢ and an access path p, mayptsto(c,p) returns the set of
abstract objects that p may point-to at c.

e mayalias € C X AP — P (AP): Given c and p, it returns the
set of access paths that may be aliased with p at c.

e mustalias € C X AP — P (AP): Given c and p, it returns the
set of access paths that are definitely aliased with p at c.

We prepare these functions by running standard pointer and alias
analyses [3, 14, 41] before the main analysis. Below, we assume
mayalias and mustalias are lifted to receive sets as argument, e.g.,
mayalias(c, {x, y}) = mayalias(c, x) U mayalias(c, y).

Given an object state s = (o, may, must, mustNot, patch, patchNot)
at ¢, ¢, updates may, must, and mustNot as follows:

@c(s) = (o, may’, must’, mustNot’, patch, patchNot)
where may’ is defined as follows:
may’ = {p € AP | o € mayptsto(c,p)} \ mustNot’.

It includes the access paths that may point-to the object, from which
mustNot’ is removed to ensure the object invariant. The sets must’
and mustNot’ are defined depending on the type of statements. For
example, when ¢cmd(c) = alloc(x), must’ and mustNot’ are:

must’ = mustalias(c, must \ mayalias(c, {x, *x}))

mustNot” = mustalias(c, mustNot \ mayalias(c, {x, *x}) U {x})

Because x refers to a new object after the allocation, we remove all
the access paths that are reachable from x (i.e. mayalias(c, {x, *x}))
from must and mustNot. In addition, mustNot’ includes x since we
know that x definitely does not point-to the old object. Other cases
are defined similarly.

3.3 Solving Exact Cover Problem

The second step of MEMFIX is to establish and solve an exact cover
problem. The static analysis computes safe and unsafe patches
separately for each object. However, a patch that is safe for an
object may be unsafe for others. Thus, MEMFIX aims to choose a
set of patches that are simultaneously safe for all allocated objects.
MEMFI1x does so by solving an exact cover problem derived from
the static analysis.

We first describe the basic method (Section 3.3.1), which captures
the key idea behind our approach but works correctly with an
assumption on the input program. We will explain the assumption
and how to discharge it in Section 3.3.2.

3.3.1 Basic Method. Let R C S be the set of reachable states avail-
able at the exit node of the program according to the static analysis:
ie, R = (IfpF)(cx). Then, we define safe, unsafe, and candidate
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patches as follows:

Safeg = | Jipatch | . _, _, _, patch, ) € R}

Candg = Safep \ UnSafep

Safep contains the patches that are guaranteed to safely deallocate
some object. UnSafey, is the set of patches that may be unsafe for
some object. Excluding UnSafep from Safep, we obtain the set of
candidate patches that we can use in repairing the program.

Let M : Candg — P(R) be the function from candidate patches
to the reachable states that can be safely deallocated by the corre-
sponding patches:

M(c) = {{o, may, must, mustNot, patch, patchNot) € R | ¢ € patch}

For example, M describes the incidence matrix in Section 2.2. Then,
the problem of finding correct patches is defined as follows.

Definition 3.1 (The Correct Patch Problem). Find a subset C C
Candp of candidate patches such that

e C covers the reachable states R, i.e., R = | J.ec M(c), and
o the chosen subsets in M(c) (where ¢ € C) are pairwise dis-
joint, i.e., M(c1) N M(cz) = 0 for all ¢1,¢c2 € C.

The first condition means that all allocated objects must be deallo-
cated (i.e. no memory-leaks). The second one means that every allo-
cated object is deallocated no more than once (i.e. no double-frees).
We guarantee the absence of use-after-frees as well because the
patches that may cause use-after-free are all collected in UnSafeg
and already excluded from Candg.

Note that this is an instance of the exact cover problem, a well-
known NP-complete problem [13]. We solve the exact cover prob-
lem by encoding it as boolean satisfiability and leveraging an off-
the-shelf SAT solver. Let R = {r1,...,rm} be the set of reachable
object states and Candg = {ci,...,cn} be the set of candidate
patches for R. Let C C Candp be the solution of the patch problem
(Definition 3.2). We introduce boolean variables S; (1 < i < n) and
Ti;j (1 £i < n,1 < j < m)to encode the solution of the patch
problem and the function M:

Si & c¢j€C, Tij — rJ'GM(Ci).

That is, S; is true iff the patch candidate ¢; € Cand is included in
the solution C, and Tj; is true iff the object state r; € R is deallo-
cated by the patch c;. Then, we can encode the two conditions in
Definition 3.2 by boolean constraints ¢; and ¢s:

m n

Tij A S;

<
A
Il
~.
I
—-
I\
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N\ (1 #i2) = =((Tj A Si) A Ty ASL)))
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The formula ¢1 encodes the first condition of Definition 3.2: for any
reachable object rj, some patch c; in the solution must deallocate
the object. The formula ¢, encodes the second condition: for any
reachable object 7, two different patches c;, and c;, in the solution
do not deallocate the object r; at the same time. Finding a satisfying
assignment of ¢; A @2, which assigns truth values to variables S;,
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determines the solution C. MEMFIX succeeds to repair the input
program iff ¢1 A ¢ is satisfiable.

Note that in our approach, patches in the solution C always
deallocate mutually exclusive concrete objects. This property is
ensured by U in the patch transfer phase, which collects patches that
are uncertain to free an object. The property is sufficient to ensure
the safety of a generated patch, although we do not guarantee that
abstract object states always represent mutually exclusive concrete
objects.

3.3.2  Ensuring Safety during Patch Generation. Now we explain
the assumption behind the basic method and how to address it. Con-
sider the code: p=malloc(); *p=malloc();, where two objects 01
and oy are allocated and pointed to by p and *p, respectively. Our
method finds out that the object 01 can be deallocated by free(p)
and oy by free(*p) at the end of the code. Thus, the method gen-
erates one of the following two fixes:

(1) p=malloc(); *p=malloc(); free(*p); free(p);
(2) p=malloc(); *p=malloc(); free(p); free(*p);

However, the second one is not safe because the object pointed
to by p is deallocated by free(p) and then dereferenced by the
subsequent deallocation free(*p), causing a use-after-free. Note
that this type of use-after-free is caused by the inserted patches,
not by the ordinary uses present in the original code (for which the
our method guarantees the safety).

We can simply address this problem by assuming that the input
program is written in a way that a temporary variable is introduced
whenever a pointer expression is dereferenced. For example, we
assume that the code above has been transformed to the follow-
ing before we apply our algorithm: p=malloc(); *p=malloc();
tmp=*p; where variable tmp is created to store the value of the
pointer expression *p. Then we can avoid the problem of the ba-
sic method by generating patches whose pointer expressions are
always program variables: e.g.,

p=malloc(); *p=malloc(); tmp=*p; free(p); free(tmp);

This does not cause use-after-free errors as no pointers are derefer-
enced by the deallocation statements inserted by our algorithm.

Another way of addressing the problem without introducing
temporary variables is to extend the previous algorithm to consider
the additional constraint that a patch should not use an object that
was previously deallocated by other patches. Let Rc C S be the set
of reachable states available at the node c: i.e., R; = (IfpF)(c). We
write R for | Jcec Re. The function M : Candr — P(R) is defined
in the same way but with the new R:

M(c) = {{a, may, must, mustNot, patch, patchNot) € R | ¢ € patch}
We define U : Candgr — P(R), which is the function that maps

candidate patches to reachable objects that may be used by the
pointer expressions of the patches: U((c, x)) = 0 and

U((c, *x)) = {{o0, may, must, mustNot, patch, patchNot) € R |
0 € mayptsto(c, x) A x ¢ mustNot}

A patch of the form (c, x) does not use any object state. A patch
(c, *x) may access the objects that x may point to at c.

In order for a patch to be safe (i.e. no use-after-free), the patch
should not use an object that was previously deallocated by another
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patch. To ensure this, for any pair (c1, c2) € CXC of selected patches,
M and U should be disjoint, i.e., M(c1) N U(cz) = 0. The extended
patch problem is defined as follows.

Definition 3.2 (The Extended Patch Problem). Find a subset C C
Candp of candidate patches such that

e C covers the reachable states R, at the exit node, ie., R¢, =
Uecec M(c), and

o the chosen subsets in M(c) (where ¢ € C) are pairwise dis-
joint, i.e., M(c1) N M(cz) = 0 for all ¢1,¢2 € C.

o the subsets in {M(c)}.ec and {U(c)}cec are disjoint, i.e.,
M(c1) NU(cz) =0 forall cq,cp € C.

The last condition can be easily encoded by a boolean formula in
a similar way described above. Our implementation solves the ex-
tended patch problem and does not introduce temporary variables.

4 EVALUATION

In this section, we experimentally evaluate MEMFIx. The main ob-
jective is to evaluate the ability of MEMFIX in fixing memory deallo-
cation errors in practice. We also compare MEMF1x with the existing
tool, LeakFix [15], for fixing memory leaks. All experiments were
done on a linux machine with Intel Core i5-4590 and 8GB RAM.

4.1 Implementation

We implemented a prototype of MEMFIx on top of Sparrow®, which
provides a general framework for performing abstract interpreta-
tion of C programs. We instantiated the framework with the abstract
domain and semantics function described in Section 3. Our focus is
on faithfully implementing the analysis and algorithm in Section 3,
rather than on optimizing its performance. We discuss the detail
and assumption of the current implementation below.

Although we presented the algorithm for the simple language
in Section 3.1, our implementation supports most of the features of
the C programming language, including procedure calls, structures,
pointer arithmetics, etc. The current implementation of the patch-
generating static analysis (Section 3.2) performs a fully context-
sensitive (except for recursion) using the call-strings method [38].
As pre-analysis, we use a standard context-insensitive and flow-
sensitive may-points-to and may-alias analysis and a context- and
flow-sensitive must-alias analysis [3]. Our implementation supports
the general class of pointer access paths in C programs, including
structure fields and a chain of pointer dereferences. However, be-
cause the number access paths can be infinite in the presence of
dynamic arrays and inductive data structures (e.g., linked list), we
approximate them using a pre-determined bound on their length.
The current bound is the maximum length of the longest pointer
access path in the given program.

Our implementation supports the C standard memory-allocators
(malloc and calloc) except for realloc. To support the full seman-
tics of realloc, a patch must introduce a conditional deallocation
statement, which is beyond the scope of the current algorithm. We
also encoded some memory-allocators in our benchmarks such as
strdup for the evaluation.

We implemented the algorithm to choose an optimal patch when
multiple patches are available. It is easy to modify our algorithm

®https://github.com/ropas/sparrow
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to find a patch that is optimal according to some criteria. For ex-
ample, suppose we would like to find a set of patches such that (1)
the number of inserted deallocation statements is minimal and (2)
objects are deallocated as early as possible. To find such an optimal
solution, we use a partial MAX-SAT solver with the soft constraints
(1) and (2). In particular, we deallocate objects as early as possible
by maximizing the number of object states that are deallocated by
patches.

4.2 Benchmarks

We evaluated MEMFIx with three benchmark sets: Juliet Test Suite
for C [4], GNU Coreutils’, and a set of model programs abstracted
from popular open-source C repositories. The first two benchmark
sets are well-known for evaluation of program analysis tools [6, 16,
25, 32]. The last one was created by us with the goal of evaluating
software repair tools for memory deallocation errors. We make
this benchmark set publicly available with our tool, so that it can
be objectively used in the future. All reported LoCs are counted
without comment and blank lines.

Fuliet Test Suite. Juliet Test Suite consists of small but diverse
programs that contain 118 CWE vulnerabilities. We used a subset
of the collection, comprising 210 testcases, relevant to memory leak
(CWE-401), double-free (CWE-415), and use-after-free (CWE-416).
For each error type (e.g., memory leak), the benchmark set contains
a variety of vulnerability patterns that differ in syntax and seman-
tics. Testcases for each CWE were categorized by their functional
variants that describe flaw types of CWE. For example "int_malloc"
means a memory block allocated to integer pointer leaks. Among
the functional variants, we did not consider semantically redun-
dant testcases such as ones that are only different in types (e.g.,
(char®)malloc, (int*)malloc)). We also excluded the testcases for
realloc.

Coreutils. Among the total 126 programs in the Coreutils-8.29
package, we chose 24 programs that use dynamic memory alloca-
tion, have the main function, and do not use realloc.

Open-Source Repositories. We collected real memory deallocation
errors from popular open-source C repositories. The benchmarks
consist of a set of model programs of 55-664 LoC abstracted from
the most recent 100 error-fixing commits in 5 GitHub open-source
C repositories. For each commit, we created a model program that
captures the key reason of the memory deallocation errors. We
did our best to preserve the original features of the program (e.g.,
pointer arithmetic, data structures and function pointers) so that
the parts of the program related to the errors remain intact in
the model programs. Therefore, although the model programs are
small compared to the original, fixing the errors in them is nontriv-
ial. We chose five C repositories which have at least 20 memory
deallocation error commits including at least 10 double-free and
use-after-free fix commits. We collected 20 error fixing commits for
each repository from the end of 2017 year in reverse: 10 commits
from memory-leak and 10 from double-free and use-after-free.

4.3 Results

https://www.gnu.org/software/coreutils/coreutils.html
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Table 2: Evaluation results on Juliet Test Suite.

CWE-ID Functional Variants Bugs MemFix LeakFix

401 int_malloc 38 38 29

struct_malloc 38 38 29

415 free_int 38 38 20

free_struct 38 38 19

malloc_free_int 20 20 20

416 malloc_free_struct 20 20 20

return_freed_ptr 18 18 0

Total 210 210 137

Table 3: Evaluation on GNU Coreutils.
MemFIx LeakFix

Programs LoC #Al | #Ins. sec #Ins. sec
yes 553 1 1 <1.0 X <10
users 577 1 1 <10 X <10
unexpand 707 1 1 <10 X <10
tee 779 1 1 <1.0 1 <1.0
mktemp 794 4 X 1.3 X <10
tsort 920 3 X 14 X <10
paste 982 3 3 24 A3 <10
date 1,054 1 1 3.5 X <10
cut 1,056 1 X 2.0 X <10
nl 1,063 4 4 4.0 X <10
pinky 1,120 3 4 52 X <10
cat 1,209 3 X 9.3 X <10
In 1,258 2 X 5.2 X <10
printf 1,288 1 1 3.0 X <10
stdbuf 1,605 3 3 1.3 X <10
wce 1,669 1 1 7.3 A2 <1.0
shred 1,822 5 X 31.1 X <10
cp 1,926 8 X 430.7 X <10
install 2,076 1 X 13.4 X <10
who 2,156 8 X 36.8 X <10
tr 2,304 10 X 20.0 X <10
expr 2,378 9 X 13.0 X <10
stat 2,439 10 6 130.3 X <10
dd 3,475 2 X 52.2 X <10

FJuliet Test Suite. Table 2 shows the results on Juliet Test Suite.
We provided the buggy versions of the programs to MEMFIX as in-
put, and manually checked the correctness of patches. To evaluate
LeakFix, we removed all free-statements from the programs, gener-
ating memory leaks, and checked whether LeakFix can patch the
buggy programs. The results show that MEMFIx succeeds to patch
all testcases while LeakFix is able to fix 137 among 210. Both tools
took less than a minute to generate the patches for each testcase.

GNU Coreutils. Table 3 shows the results on 24 programs from
Coreutils. For evaluation, we made those programs buggy by re-
moving all free-statements. The goal of the evaluation here is to
see whether MEMFIx and LeakFix can automatically repair the
memory leaks without causing other types of errors. In this set
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Table 4: Evaluation on open-source C repositories

Repo. ML DF UAF Total
Fix/#Pgm. Fix/#Pgm. Fix/#Pgm. | Fix/#Pgm.

Binutils 4/10 1/5 2/5 | 7/20 (35%)
Git 1/10 1/4 2/6 | 4/20 (20%)
OpenSSH 6/10 5/7 1/3 | 12/20 (60%)
OpenSSL 5/10 3/5 15|  9/20 (45%)
Tmux 5/10 0/3 0/7 | 5/20 (25%)
Total 21/50 (42%) | 10/24 (42%) | 6/26 (23%) | 37/100 (37%)

of experiments, we manually replaced (x)strdup by semantically-
equivalent code using malloc in order for LeakFix to understand.

#Al. reports the number of target allocation-sites in the programs.
#Ins. is the number of free-statements inserted by the tools when
the repair process is successful. We report a program is fixed if all
the target allocation-sites are adequately deallocated by a gener-
ated patch. We manually checked the correctness of the generated
patches. The results show that MEMFIX can repair 12 out of 24
programs. LeakFix generated patches for 3 programs, of which 2
programs were fixed partially (i.e. some errors remain).

Open-source C Repositories. Table 4 shows the results on the
model programs constructed from open-source repositories. For
the total of 100 model programs, where one program contains a
single error, MEMFIX was able to 37% of them. For memory leak
(ML), MEMF1X succeeded to fix 42% (21/50) on average. For double-
free and use-after-free, MEMFIx was able to generate patches for
33.3% (8/24) and 23.1% (6/26) of the errors. The public version of
LeakFix was unstable to handle these programs and we failed to
objectively compare MEMFIx with LeakFix on this benchmark. For
example, LeakFix often produced obviously-incorrect patches (e.g.
freeing a variable twice) when aliased pointers are used extensively.

We found that these open-source programs frequently use low-
level C features, and therefore fixing memory deallocation errors
in them is much more challenging than the benchmark programs
in Juliet Test Suite or Coreutils. For example, the model programs
collected from Git often store memory objects in arrays or linked
lists and extensively use reallocation (i.e. realloc) to process a set
of strings (e.g. directories). Since the current version of MEMFIX
cannot effectively handle such features, the portion of successful
patches is relatively low in Git. OpenSSH usually uses primitive
allocators and deallocator to manage allocated objects except for
key-related objects. OpenSSH manages memory of key structures
conditional to key-types, which requires tracking the type flags of
allocated objects to precisely collect patch candidates. Allocators
of OpenSSL are quite complex since they allocate memory accord-
ing to types; behaviors of allocators(e.g. allocation of fields or not)
of OpenSSL depends on its type. Tmux, a terminal multiplexer,
manages its allocated objects by red-black-tree data structure. Con-
sequently, we failed to track must-points-to access paths for patch
candidates.

4.4 Limitations

MEMF1x has a number of limitations as well. We identify them and
discuss how to overcome the limitations below.
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int xfoo(struct st xp) {
int xq;
if(p->flag) q = malloc(1);
else q = p—>f;

1 int main() {
2 p = malloc(n);
3 for(i=0; i<n; i++)

return q; .
) 4 pl[i].f = malloc(1);
5 / i]. f
int main() { ';(use)p[ﬂ
; if(...
struct st p; int *q; ‘
7 return 1; // leak
p.f = malloc(1); . . .
- foo(ap);: 8 for(i=0; i<n; i++)
4= P ) free(plil.f);
// use q
10 return 0;
free(q); )
free(p.f); // double-free !
3
(a) Double-free (b) Memory leak

Figure 4: Errors that MEMFIX cannot fix.

One limitation of MEMFIx is that it can only fix an error by in-
serting or removing deallocation statements. In experiments with
open-source repositories (Table 4), we found that some memory
deallocation errors in the wild require other fixing strategies such as
inserting conditional statements, temporary variables, or changing
passing pointers (e.g., dst = src) to newly allocated object (e.g., dst
= strdup(src)). A common failure point is when a new conditional
statement is required to fix the error. For example, consider the
program in Figure 4(a), simplified from Git. To fix the double-free
error at line 13 without causing memory leak, we have to deallo-
cate q at line 12 only when the flag p->flag is true. That is, we
need to modify free(q) at line 12 into if (p->flag) free(q); by
introducing a conditional statement.

Another situation, where MEmF1x fails, is when deallocation
statements exist implicitly in code. For example, the following code
(1) shows one example of use-after-free error which cannot be fixed
by MEmF1x found in Git.

p=alloc(); g=p; p=realloc(p, sz); use(q);
p=alloc(); g=strdup(p); p=realloc(p, sz); use(q);

(1)
)

In this code, q points-to the object allocated at the first statement,
but this object may be deallocated by realloc-statement and use-
after-free may occur at use(q). However, this code cannot be fixed
by inserting or deleting free-statements since free-statement does
not exist explicitly. The developer fixed this code by allocating a
new object and passing it to g instead of the existing object which
can be deallocated by the realloc-statement.

Another limitation comes from the pointer analysis. For example,
Figure 4(b) shows an example program, where MEMFIX cannot fix
the memory-leak error at line 7. To fix the error, the pointer analysis
needs to be able to separately consider the array elements. However,
as the pointer analysis employed by MEmMFIX abstracts all array
elements as a single abstract location, MEMFIX cannot analyze the
code precisely. We also found that the context-insensitive may-
pointer information is not precise enough to generate patches in
practice.
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Finally, the scalability of static analysis should be improved. We
plan to adopt advanced analysis techniques (e.g., [33, 34]) accumu-
lated in the static analysis community over the last decades.

5 RELATED WORK

A large amount of work on automatic program repair has been
done over the last decade (e.g., [1, 7, 12, 15, 21-23, 26, 28-31, 39, 40,
43, 46, 49-52]). We classify the existing work into special-purpose
and general-purpose techniques and compare them with MEMFIX.
We also discuss techniques for automatic memory management.

Special-Purpose Program Repair Techniques. MEMFIX be-
longs to the family of techniques that focus on fixing specific classes
of errors. Existing techniques aim to automatically fix memory
leak [15, 43, 52], buffer overflow [39], integer overflow [7], null
pointer exceptions [12], error handling bugs [46], race errors [1],
etc. To our knowledge, MEMFIX is the first technique that is able to
fix memory deallocation errors (i.e., memory-leak, double-free, and
use-after-free) in a unified fashion.

In particular, existing techniques for fixing and diagnosing mem-
ory leaks [9, 15, 43, 51, 52] cannot fix double-frees or use-after-frees.
Gao et al. [15] present a technique, called LeakFix, that automati-
cally fixes memory-leak errors in C programs. LeakFix uses pointer
and dataflow analyses to safely insert a free statement into a pro-
gram point where the allocated object can be deallocated only once
without being used subsequently. Sonobe et al. [43] present a type-
based technique for fixing memory leaks in imperative programs.
The technique is based on the type system using fractional own-
erships [18, 44, 45], which guarantees that well-typed programs
do not have memory-deallocation errors at runtime. The idea is
to run the existing type inference algorithm [45] and annotate
the input program with type-casts, which express how owner-
ships of pointers should be converted. For each implicit type-cast
in the resulting program, a free statement is introduced to make
the type-conversion explicit. Yan et al. [52] present a technique
that combines static and dynamic analysis to avoid memory leaks.
These techniques are only able to insert deallocation statements
and therefore limited to fixing memory leaks. LeakPoint [9] and
LeakChaser [51] are essentially localization tools and cannot fix er-
rors automatically. By contrast, MEMFIX is designed to fix memory
deallocation errors in general with a novel algorithm that solves
the exact cover problem induced by a static analysis.

General-Purpose Program Repair Techniques. The general
test-based approaches (e.g., [21-23, 26, 28-31, 40, 49, 50]) to au-
tomatic program repair is not adequate for fixing memory deal-
location errors. These approaches work with a set of testcases,
some of which expose the error in the program, and aim to find
a patched program that behaves correctly on all inputs in the
test-suite. These techniques can be classified into generate-and-
validate and semantics-based techniques. Generate-and-validate
approaches [21, 26, 28, 49] repeatedly search for candidate patches
within a pre-defined search space until a program that can be vali-
dated against the test-suite is found. Semantics-based approaches [22,
23, 29-31] use symbolic execution to derive contraints on the cor-
rect patch and synthesize the patch by using program synthesis or
constraint solving. Although remarkable progress has been made,
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it is hard to fix memory deallocation errors with a test-based tech-
nique. Besides their inherent overfitting problem [27, 36, 42, 54, 55],
the safety condition for memory deallocation (i.e., no memory-leaks,
double-frees, and use-after-frees) cannot be completely specified
with input-output testcases.

A few techniques enhance the test-based approaches by using, for
example, program verification [24], metamorphic testing [19], and
contracts [35]. Although these techniques mitigate the overfitting
problem [24, 35] or relieves the burden of writing testcases [19], it
is still nontrivial to provide a complete specification for proving the
absence of memory deallocation errors. In this work, we present a
static-analysis-based approach, where the correctness conditions
are automatically generated by a static analysis.

Automatic Memory Management Techniques. Several tech-
niques [2, 8, 11, 17, 37] have been proposed to optimize memory us-
age in automatic memory management systems, which also inserts
deallocation statements in a program. However, their goal is to op-
timize performance, rather than fixing memory deallocation errors.
Aiken et al. [2] introduced explicit region operations (i.e., region
allocation and deallocation) and presented an algorithm to improve
efficiency of a region-based memory management system [47, 48]
by inserting allocation and deallocation statements. However, this
technique works only on region type-annotated programs. Shaham
et al. [37] presented a static analysis to verify safety of free-inserted
Java programs, which can verify the safety of list-manipulating
programs but requires manual insertion of deallocation statements.
Compile-time object deallocation techniques [8, 17] insert free-
statement in Java bytecode programs at compile-time to reduce
overhead of garbage collection. However, these techniques insert
free only at unreachable points and cannot free all objects. Dillig et
al. [11] presented an automated resource management technique
to optimize resource usage in Java. This technique analyzes and
approximates lifetimes of objects and inserts static and dynamic
disposal statements.

6 CONCLUSION

Debugging memory-deallocation errors is a taxing and error-prone
task. In this paper, we presented MEMFIX, a new technique for
automatically debugging memory-leak, double-free, and use-after-
free errors in C programs. Experimental results show that MEMFIx
is able to repair various errors from open-source programs.

Notably, MEMFIx is based on a sound static analysis, which pro-
vides several fundamental benefits. First, it sheds light on the con-
nection between the problem of finding correct patches for memory-
deallocation errors and the exact cover problem. Second, it formally
guarantees the correctness of the patches; the MEMFIx-generated
patches eliminate the target error without introducing new errors.
As future work, we plan to push this direction towards deploying
the technology in practical development setting.
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