
{HEADSHOT}

This lesson introduces a powerful automated testing technique called dynamic symbolic execution.
This technique is based on hybrid analysis: it combines static analysis and dynamic analysis in a manner
that gains the benefits of both.

The goal of the technique is to maximize program path coverage and thereby help uncover potential
bugs. To this end, this technique systematically generates inputs to a given program that drive its
execution along different paths in the program.

The technique is highly versatile: it is not limited to any programming language constructs or idioms,
and while it may result in false negatives -- that is, it may miss bugs -- it does not produce false
positives, that is, every assertion violation it discovers is indeed real.

The remarkable success of this technique has led to open-source as well as commercial
implementations of the technique for virtually every mainstream programming language.

This lesson will present the principles underlying this technique and prepare you to apply it to test
small units of code as well as entire, large, complex programs.

1



Writing and maintaining tests is tedious and error-prone. A compelling idea to overcome this problem
is automated test generation. This idea has several benefits.

First, it can be used to generate a test suite that can then be run regularly to check for regressions in
the program.

Second, it can be used to execute all reachable statements in the program, and thereby attain high
code coverage.

Third, it can be used to catch any assertion violations. Assertions, as you may recall, are a general
mechanism for specifying program correctness.

2



In this lesson, we will discuss a new technique for automated test generation called dynamic symbolic
execution.

This technique keeps track of the program state both concretely, like a dynamic analysis, and
symbolically, like a static analysis.

It solves constraints to guide the program’s execution at branch points. In this manner, it
systematically explores all execution paths of the unit being tested.

Dynamic symbolic execution is an example of a hybrid analysis: it collaboratively combines dynamic
and static analysis.

3



To understand how dynamic symbolic execution works, let’s visualize a program as a binary tree with
possibly infinite depth called the computation tree.

Each node in the tree represents the execution of a conditional statement, and each edge represents
the execution of a sequence of non-conditional statements. The left child of a node N represents the
branch point reached by taking the “false” branch at N, and the right child of a node N represents the
branch point reached by taking the “true” branch at N.

Note that we’ve “unrolled” all loops in the program by representing each loop as a sequence of
consecutive if-then-else statements. This means that our tree might have infinite depth, as some
loops may be unbounded.

A path in the computation tree represents an equivalence class of inputs: if two inputs lead to the
same set of branch points and statements executed, we consider those inputs to be equivalent. The
goal of dynamic symbolic execution is to systematically generate non-equivalent inputs, that is, inputs
that lead the program’s execution along different paths in its computation tree. We have numbered
the nodes in this example tree in a possible ordering, a depth-first ordering, in which dynamic symbolic
execution will visit them. But let’s not get too much into details of how dynamic symbolic execution
chooses paths quite yet. In fact, for computational trees with infinite depth, this is a sophisticated
problem!

4



Let’s start with a comparatively simple computation tree corresponding to the following program
test_me.

The program takes as input two integer variables x and y. It first tests whether 2*y == x. If 2*y != x,
then the program exits normally. But if 2*y == x, then the program proceeds to test whether x <=
y+10. If x <= y + 10, then the program exits normally. But if x > y + 10, then the program throws an
error.

The computation tree that results from this program has just two nodes, corresponding to the two
branch points. The root node is labeled “2*y == x” which corresponds to the outer branch point. If this
test fails, then the program exits normally, so the root has no left child. If the test succeeds, then we
reach another branch point. So the root has a right child, labeled “x <= y + 10” corresponding to the
test we perform at this second branch point.

If this test succeeds, then the program exits normally. If the test fails, then the program throws an
error, which we symbolize by marking the left edge of the corresponding node by “ERROR”. In both
these cases, there are no further child nodes, as there are no additional branch points in the program.

In general, we will represent an assertion in this manner: perform a test, and if the test fails, then the
program reaches a distinguished ERROR label.

One last point of interest is that, because the program has no unbounded loops, the computational
tree is finite.

5



To better motivate the dynamic symbolic execution approach, let’s look at some existing approaches
for automated test generation.

First, we’ll consider random testing, in which we generate random inputs and execute the program on
these generated inputs.

Let’s look at the example program test_me, which takes an integer x, and, if x equals 94389, it raises
an error. Otherwise, the program exits normally.

Assuming an int is 32 bits and each possible int has an equal chance of being generated, the
probability that our random input will detect this error is astronomically small: one out of 2 to the
32nd power, which is about 23 billionths of a percent. So there is a high probability that random
testing will generate a false negative in a limited amount of time: incorrectly stating that the ERROR
label is unreachable.

6



Another approach that has existed since the 1970s is called “symbolic execution.” In this
approach, input variables are represented symbolically instead of by concrete values. The
program is executed symbolically, and symbolic path constraints are collected as the program
runs. At each branch point, we invoke a theorem prover to determine whether a branch can
be taken; if so, then we take the branch, otherwise, we ignore the branch as dead code.

For example, in this new version of the program test_me, instead of testing that the input
variable x equals a particular integer value, we ask the theorem prover if there is any integer
value for x that satisfies the condition x * 3 != 15. The theorem prover would respond “yes”,
allowing us to deduce that the “false” branch is reachable. Because the false branch
terminates the program, we now ask the theorem prover if the negation of x * 3 != 15 has
any satisfying assignment (that is, does x * 3 == 15 have a satisfying assignment?). The
theorem prover would respond “yes,” so we’d explore the “true” branch of the first condition
while “collecting” the symbolic constraint that x * 3 == 15.

Next, we reach the second condition x % 5 == 0. We now ask the theorem prover if the
expression x * 3 == 15 AND x % 5 == 0 has a satisfying assignment. The theorem prover
would respond “yes,” so we’d explore the “true” branch, leading to program termination.
Finally, we negate the condition and ask if x * 3 == 15 AND x % 5 != 0 has a satisfying
assignment. The theorem prover would respond “no,” meaning that the false branch is
unreachable, dead code. We therefore skip that branch. Since we have then explored all
feasible paths and not reached an error, we can conclude that the program will not raise an
error in any execution.

However, because of the possibility of exponential explosion in branch conditions, it becomes
quickly obvious that this strategy does not scale for large programs.

7



Another problem with purely symbolic approaches is that they may not be powerful enough
to decide if a particular constraint has a satisfying assignment.

For example, in this version of the program test_me, we ask the theorem prover to decide
whether there exists an integer x such that 2 to the power x modulo a product of two large
prime numbers, denoted here by constant c, equals 17. If so, the program throws an error.
Otherwise, the program terminates normally.

Note that this particular condition is an instance of the discrete logarithm problem, which is
believed to be computationally intractable on classical computers. When dealing with such a
difficult question to resolve symbolically, our theorem prover might throw up its hands and
give up. In this situation, the theorem prover errs on the side of soundness by declaring the
condition to be feasible, even if there really is no integer x such that 2^x modulo c equals 17.
In this case, the symbolic execution approach would yield a false positive, considering both
branches of the condition to be reachable when really only the “false” branch is reachable.

8



A common theme in this course is to try to combine two approaches in order to get the
benefits of both without suffering from the limitations of either. In this case, we will combine
the concrete execution approach of random testing with the symbolic execution approach we
just discussed. This approach is called dynamic symbolic execution, or DSE for short.

Here’s how it works: it initially sets the input values of the function to be tested randomly,
and observes the branches of computation that are taken. It also keeps track of constraints
on the program’s state symbolically.

Upon reaching the end of some computational path, DSE will backtrack to some branch point
and decide whether there is a satisfying assignment to the program’s input variables that
allows the other branch to be taken at that point. If so, the solver generates such an
assignment, and DSE continues onward. If not, then DSE ignores that branch as dead code.

So far, this sounds much like symbolic execution. However, there’s one further subtlety. If a
condition becomes complex enough that the solver cannot find a satisfying assignment, then
the solver “plugs in” the concrete values that DSE is working with to one or more variables in
the constraints to simplify them. This strategy makes the constraint solver into what is called
an “incomplete” theorem prover: it will never declare an unsatisfiable constraint to be
satisfiable, but it may fail to satisfy some satisfiable constraints because of the simplification
being made. (This contrasts with pure symbolic execution, whose constraint solver was
unsound -- it would declare some unsatisfiable constraints to be satisfiable.)

9



Let’s walk through an example of how DSE would identify failure-generating inputs to a
function. In this example, we will be looking at the following functions: foo, which takes an
int v and returns the int 2 times v; and the function test_me, which takes two ints, x and y,
and has no return type. test_me operates as follows: it sets the int z equal to foo of y. Then,
if z equals x, it makes an additional check if x is greater than y plus 10. If this second check
passes, then the program throws an error. If either of the checks fail, then the program
terminates without error.

Let’s look at how DSE would work on the test_me function. First, two random inputs would
be generated for x and y: say, x = 22 and y = 7. Additionally, DSE would keep track of the
symbolic state of the program: x equals some number x_0 and y equals some number y_0.

10



On the first line, integer z is assigned the output of the function foo applied to y. In the
concrete state, this means that z now equals 14. And in the symbolic state, the variable z has
the value 2 times y_0. Note that DSE has the ability to concretely and symbolically compute
the output of a call to a function, such as foo.

11



At the branch point “z == x”, DSE observes that the current concrete value of x does not
equal the current concrete value of z. Symbolically, DSE stores this constraint (z != x) as a
path condition over the symbolic values of z and x as: 2*y_0 != x_0. DSE then follows the
“false” branch from this point, leading to the end of the program.

12



Now, DSE will backtrack to this branch point and attempt to take the “true” branch. For this
purpose, it negates the most recently added constraint in the path condition, which is 2*y_0
!= x_0, to 2*y_0 == x_0. It asks a solver to find a satisfying assignment to the constraint
2*y_0 == x_0. There are certainly two integers satisfying this constraint; let’s suppose the
solver returns x_0 = 2 and y_0 = 1.

13



DSE then restarts the test_me function, this time calling it with the concrete input values
generated by the constraint solver: x = 2 and y = 1. The symbolic state begins anew with x =
x_0 and y = y_0.

14



After executing the first line, z takes on the concrete value 2 (the output of foo(y)) and, as
before, the symbolic value 2 * y_0.

15



At the next line, we inspect the branch condition z == x. In this case, the condition is true, so
our path condition becomes 2*y_0 == x_0 (substituting the symbolic values for z and x into
the branch condition). We then inspect the next line of the “true” branch of this condition.

16



At the next branch point, x has the concrete value 2 and y+10 has the concrete value 11, so
we take the false branch, terminating the program. We also add the symbolic constraint x_0
<= y_0 + 10 to the path condition, which is the negation of the branch condition we found to
be false (with appropriate symbolic substitutions for the variables x and y).

17



Since DSE has reached the end of the program, it negates the most recently added constraint in the
path condition to obtain x_0 > y_0 + 10, and then it passes the constraints 2*y_0 == x AND x_0 > y_0 +
10 to the solver. The solver finds that there is a solution to these constraints; in particular, it returns
x_0 = 30 and y_0 = 15.

18



Now, DSE runs the test_me function again, this time with inputs x = 30 and y = 15. The symbolic state
again starts as x = x_0 and y = y_0.

19



z is assigned the concrete value 30, while its symbolic value is 2*y_0, as before.

20



When we reach the branch condition z == x, we see that it is true, so we add the symbolic constraint
2*y_0 == x_0.

21



Then, at the next branch point, the concrete value of x is indeed greater than the concrete value of y
plus 10, so we add the new symbolic constraint x_0 > y_0 + 10.

This branch leads us to the error, at which point we have identified a concrete input which causes the
program to fail: x = 30 and y = 15.

22



{QUIZ SLIDE}

Now that you’ve seen an example of how DSE works, take a moment to consider this quiz. We are
given a computation tree as follows: the program starts by checking condition C1. If false, the
program terminates. If true, the program checks condition C2. Regardless of how C2 evaluates, the
program terminates.

Which of these 8 constraints might DSE possibly solve in exploring this computation tree? That is,
select each constraint that might be fed to the constraint solver.

C1
C2
not C1
not C2
C1 and C2
C1 and not C2
not C1 and C2
not C1 and not C2

23



{SOLUTION SLIDE}

If DSE evaluates C1 and initially finds it to be false, then DSE will subsequently attempt to solve C1.
[Mark appears on C1.]

On the other hand, if C1 initially evaluates to true, then DSE will proceed to evaluate C2.

If C2 is found to be true, then DSE will subsequently attempt to solve (C1 and not C2) [mark appears
on (C1 and not C2)]; however, if C2 is found to be false, then DSE will subsequently attempt to solve
(C1 and C2) [mark appears on (C1 and C2)].

Finally, after DSE finishes exploring the “true” subtree of C1, it will attempt to solve (not C1) in order
to try to explore the “false” subtree [mark appears on (not C1)].

24



Let’s look at how dynamic symbolic execution handles a more complicated example. Here, we’ve left
the test_me function the same, but we’ve altered the behavior of foo so that it now securely hashes
its input and outputs the result of that hash.

DSE begins this example the same way as before: it takes the random inputs (we’ll again use x = 22 and
y = 7) and stores them in its concrete state; and it stores x = x_0 and y = y_0 in its symbolic state.

25



In this program, z is again assigned the output of foo(y). However, its concrete value this time is a
large number with over 150 digits, starting with the digits 601 and ending in the digits 129. (Let’s
ignore for now the overflow that would occur in some languages in trying to store such a large
number.) Symbolically, z takes on the value secure_hash(y_0).

26



Comparing the concrete values of x and z shows that they are different, so the symbolic constraint
secure_hash(y_0) != x_0 is added to the path condition, and we reach the end of the program.

In order to take the other branch, DSE needs to determine a pair of inputs x_0 and y_0 such that the
most recently added constraint in the path condition evaluates to false. That is, such that
secure_hash(y_0) == x_0. However, the nature of a secure hash function is that it is extremely difficult
to solve an equation like this.

27



This example showcases the difference between symbolic execution, as previously described, and
dynamic symbolic execution. Recall that symbolic execution would have thrown up its hands at this
point and, by default, declared the constraint secure_hash(y_0) == x_0 satisfiable, thereby continuing
down the “true” branch of execution.

Dynamic symbolic execution, by contrast, uses its concrete state to simplify the symbolic constraint. In
this case, it would replace y_0 in the symbolic constraint by 7, the concrete value of y in the program
at that point.

28



The constraint to be solved is then 601...129 == x_0, which is easy for our constraint solver to solve:
just take x equal to that number. (Note that it wouldn’t work to plug in 22 for x_0 and then solve for
y_0, as secure hashes are deliberately difficult to invert.)

29



Dynamic symbolic execution re-evaluates the test_me function using these new concrete inputs: x =
601...129, y = 7. The symbolic state as usual starts as x = x_0 and y = y_0. Then,

30



The variable z is assigned foo(7), which is the output of the secure hash of 7. The symbolic value of z is
again secure_hash(y_0).

31



Now, at the branch point, the concrete values of x and z are indeed equal, so the “true” branch is
taken, as expected.

32



At the next branch point, we check whether x is greater than y + 10. The concrete values of x and y
satisfy this constraint (integer overflow notwithstanding), so we take the true branch again, which
leads to the error in the program.

33



{QUIZ SLIDE}

Now consider the following function, test_me, which takes the int x as an argument and returns an int.
The program reads as follows:

“int brackets A is assigned open-curly-brace five, seven, nine, close-curly-brace”
“int i is assigned zero”
“while i is less than 3 open-curly-brace”
“If A sub i is equal to x, break”
“Increment i”
“close-curly-brace”
“return i”

Suppose DSE tests this function starting with the input x = 1. Write the input used and constraints
solved in each iteration of DSE. Assume a depth-first search of the program’s computation tree, and
leave a trailing constraint blank if it is unused (for example, if only two constraints are solved for some
iteration, leave C3 blank for that iteration). Also use the name x0 to represent the symbolic variable
corresponding to the input variable x.

I’ve filled in the first row for you: on iteration 1, the input x is 1, C1 is the constraint 5 does not equal
x0, C2 is the constraint 7 does not equal x0, and C3 is the constraint 9 equals x0.

34



{SOLUTION SLIDE}

After the end of the first iteration of DSE, the constraint C3 forces the new input to be 9.

In the second iteration, the first path constraint added is 5 != x0, when the concrete input 9 fails to
equal A[0]. The second path constraint added is 7 != x0, and the third path constraint added is 9 == x0,
leading to the termination of the program. Normally we’d negate the most recently added constraint
and solve the resulting expression, but this would lead us to take a path we’ve already explored. So
the next step is to discard the third path constraint and negate the second path constraint, resulting in
C1 being 5 != x0, C2 being 7 == x0, and C3 being left blank.

These constraints require the third concrete input to be 7. For the resulting run of test_me, the first
path constraint added is again 5 != x0, and then 7 == x0 would be added before the program
terminates. DSE has already fully explored the subtree where 7 == x0 has been negated, so it needs to
backtrack and negate 5 != x0 in order to continue exploring the computation tree. So the only
constraint to be solved is 5 == x0.

This forces the next concrete value of x to be 5, and this leads the program to terminate after the first
branch point, the only path constraint added being 5 == x0. Negating 5 == x0 leads to a previously
explored subtree, so there’s nothing left to do: the entire computation tree has been explored, and so
DSE terminates. There are no constraints to solve.

Note that this program has a bounded loop; in general, loops can result in infinite computation trees,
but in this case the tree remains finite. This example also illustrates that not all conditions in the
program (for example, the condition “i < 3”) result in nodes in the computation tree. The reason is that
only conditions that are data-dependent upon the program’s input result in branch points in the
computation tree. Note also that even expressions such as A[i] are constants (being represented as 5,
7, or 9 in the constraints) for the same reason: neither A nor i are data-dependent upon the program’s
input x.

35



Let’s take a look at one more example to showcase how dynamic symbolic execution differs from its
static counterpart. Here, the foo function still returns a secure hash of its input, but the test_me
function operates as follows: if its inputs x and y are different, then if foo(x) equals foo(y), the program
throws an error. If either of these conditions is false, then the program terminates without error.

Suppose DSE starts again with the concrete random inputs x = 22 and y = 7. The symbolic state again
is set to x = x_0 and y = y_0.

36



At the first condition, since the concrete values of x and y are different, the “true” branch is taken, and
we add the symbolic constraint x_0 != y_0 to the path condition.

37



At the second condition, the output of foo(22) and foo(7) is different, so we take the “false” branch
and add the symbolic constraint secure_hash(x_0) != secure_hash(y_0) to the path condition.

In order to take the “true” branch of the second condition, we need to find a satisfying assignment to
the path condition with the most recently added constraint negated: that is, we need to find x_0 and
y_0 with the same secure_hash but so that x_0 != y_0. Finding such a pair of inputs -- called a collision
-- is a hard problem for cryptographically secure hashes, so our solver is likely not going to be able to
find them.

It will first start by trying to simplify the constraint by inserting a concrete value for one of the inputs:
in this case, 7 for y_0.

38



The constraint has been partially simplified, but we are left with a similarly hard problem for a secure
hash function: finding an input with a specified output. We know taking x_0 = 7 would work, but we
can’t choose 7 because of the second constraint that x_0 != 7. So DSE will use the other concrete
value in its repertoire in an attempt to simplify the condition: plugging in 22 for x_0.

39



Now the constraint is entirely concrete, with no symbolic quantities left. However, as it stands, it is
unsatisfiable, because the two large numbers in the equality condition are different. In this case, the
solver would declare the constraint unsatisfiable and ignore the branch that satisfying the constraint
would have led to.

This means that DSE would not find the error in the code, as the branch it lies on is considered to be
unreachable. In this example, DSE has returned a false negative: it has failed to find the error in the
code.

The difference between dynamic symbolic execution and “pure” symbolic execution is therefore
similar to the difference between dynamic and static analysis. Dynamic analysis will never model a run
of the code that could not actually occur, so it will never return false positives: in other words,
dynamic analysis is complete. But it can miss actual runs of the code that lead to errors, so it is not
sound.

In contrast, symbolic execution on its own will always take a branch that it isn’t sure cannot be
reached. So it may model runs of the program that could never happen, sometimes returning spurious
errors (hence it is incomplete), but it will take all reachable branches as well, so it will never incorrectly
declare a program to be error-free (hence it is sound).

40



{QUIZ SLIDE}

So far we’ve focused on example programs with finite computation trees. However, what properties
does DSE exhibit in general when considering programs with possibly infinite computation trees?

- DSE is guaranteed to terminate.
- DSE is complete: if it ever reaches an error, the program can indeed reach that error in some

execution.
- DSE is sound: if it terminates and did not reach an error, the program cannot reach an error in any

execution.

Select all the statements that are true of DSE applied to such programs.

41



{SOLUTION SLIDE}

Remember that the undecidability of the halting problem implies that no program analysis can have all
three of these properties, so at least one of these statements will be incorrect.

In an general program with unbounded loops, DSE (as we’ve described it in this lesson) is not
guaranteed to terminate. As an exercise, try to construct a short program that DSE would be unable
to finish its analysis on. Note however that we could make DSE always terminate by specifying an
arbitrary stopping condition (e.g., go no deeper than 50 branch points).

DSE, despite being based on an incomplete theorem-proving strategy, turns out to be complete. Any
error it reaches corresponds to the execution of the program on a concrete input, so the error can be
reproduced by running the program on that same input.

On the other hand, DSE is not sound. As we saw in the third example, even on finite computation
trees, the solver may fail to identify a solution to a given set of constraints, leading DSE not to take a
potential program path that would lead to an error.

42



So far we have seen DSE’s usefulness in the context of testing functions as units. Now let’s take a look
at how DSE could be used when the unit of test is a data structure.

Previously, the tools we have seen to produce tests in this context are Korat and Randoop. We could
also use random testing for data structures, but the same problem inherent to random testing still
occurs: an error could be difficult to reach via randomness alone.

In this example, we have a data structure which models a linked list in C++-like syntax. We define the
type “cell” to consist of an integer field named data and a pointer to another cell, named next. We
next define the function foo which takes an integer v as its argument and returns the integer 2*v + 1.
Finally, we define the function test_me, which takes an integer x and a pointer to a cell called p, and
does four nested if-checks:

if x > 0
if p != NULL
if foo(x) == p->data, and
if p->next == p

If all four of these conditions are true, then the function throws an error. Otherwise, the function
returns 0.

Here is what a typical random test driver would do. It would generate a random value of x and a
random memory graph (filling in random values for the data field in each node) reachable from an
initial pointer p to give to test_me. The probability that even the third condition, foo(x) == p->data, is
true is extremely small (in fact, 0 if p->data is even). So it’s highly unlikely that the error in this
function would be caught by a random tester.

43



Dynamic symbolic execution, on the other hand, would find this error after at most five runs of the
test_me function.

For example, suppose the randomly generated inputs first given to test_me are x = 236 and p = NULL.
As before, DSE stores both the concrete values of these variables and their symbolic values, which
we’ll call x_0 and p_0.

44



These concrete values lead DSE to take the “true” branch for the first condition, x > 0, so it adds the
symbolic constraint x_0 > 0 to the path condition.

45



But, because p is NULL, the condition p != NULL evaluates to false, and the function returns 0. DSE
stores the negation of this condition as p_0 == NULL in its path condition.

46



As always, since the function has terminated, DSE will negate the most recently-stored constraint in
the path condition and then pass the conjunction of all the constraints in the resulting path condition
to the solver.

The solver will attempt to find values for x_0 and p_0 satisfying x_0 > 0 and p_0 != NULL. In this case,
the solver will need to allocate memory for a cell data structure and then generate values for the
members of that cell. A satisfying assignment in this case might be: x_0 = 236, p_0->data = 634, and
p_0->next = NULL.

47



This forms the new concrete state for the next run of the test_me function. The symbolic state is
expanded as well with the symbolic values v_0 (assigned to p->data) and n_0 (assigned to p->next).

48



The first condition again evaluates to true, so the symbolic constraint x_0 > 0 is added to the path
condition.

49



This time, the second condition, p != NULL, also evaluates to true, so the symbolic constraint p_0 !=
NULL is added to the path condition.

50



But the third condition, foo(x) == p->data, evaluates to false, so the symbolic constraint 2*x_0 + 1 !=
v_0 is added to the path condition.

51



DSE then passes the path condition (with 2x_0 + 1 != v_0 negated) to the solver to attempt to find
inputs that will satisfy the third branch condition.

The solver might come up with the following: changing x_0 to 1 and v_0 to 3, and otherwise leaving
the inputs the same.

52



DSE will then run test_me again with the new input values,

53



adding the appropriate symbolic constraints to the path condition as each branch condition is
evaluated.

54



[no text]

55



[no text]

56



Eventually, the fourth condition, p->next == p, evaluates to false, so the symbolic constraint n_0 != p_0
is added to the path condition.

Negating this most recently added constraint, the solver then attempts to construct inputs satisfying
the constraints that x_0 > 0, p_0 != NULL, 2*x_0 + 1 == v_0, and n_0 == p_0. In this case, it would just
set p_0->next to point to the same place as p_0.

57



Now DSE takes one more stroll through the test_me function.

58



Each of the branch conditions for these inputs evaluates to true.

59



[no text]

60



[no text]

61



And, finally, the program’s error is triggered, so DSE has identified a particular concrete input that
triggers the error.

62



Dynamic symbolic execution is a hybrid approach to software testing that attempts to strike a balance
between the costs and benefits of dynamic and static analysis. As you saw, it generates concrete
inputs one-by-one such that each input takes a different path through the program’s computation
tree. And it executes the program both concretely and symbolically.

These two types of execution cooperate with each other. On the one hand, the concrete execution
guides the symbolic execution. By replacing symbolic expressions with concrete values if the symbolic
expressions become too complex, the concrete execution enables DSE to overcome the
incompleteness of the theorem prover.

On the other hand, the symbolic execution allows DSE to generate new concrete inputs for the next
execution of the program. This increases the coverage potential of DSE over other dynamic analyses
such as pure random testing.

63



{QUIZ SLIDE}

Now that you’ve seen how DSE works, take some time to synthesize what you have learned by
answering these questions about the characteristics of DSE. Choose the best answer for each
question. As you answer, compare and contrast your answers with the characteristics of previous
types of analyses.

The testing of DSE is best described as which of the following?
Automated,	black-box
Manual,	black-box
Automated,	white-box
Manual,	white-box

The input search strategy DSE uses is:
Randomized
Systematic

What is the sensitivity of DSE to program structure?
It	is	flow-insensitive
It	is	flow-sensitive	but	not	path-sensitive
It	is	path-sensistive

Which of these best describes the instrumentation performed in DSE?
Sampled
Non-sampled

64



{SOLUTION SLIDE}

In the landscape of testing techniques, there are two separate spectra: automated versus manual and
black-box versus white-box. The quadrant of the landscape in which DSE falls is automated & white-
box. It is an algorithmic technique for deriving inputs leading to programming errors, so it is certainly
an automated technique. Moreover, it requires access to the program’s code, so it is unequivocally a
white-box technique.

Let’s look at the second question. Different automated tools have different strategies for searching
the space of inputs for error-producing inputs. Examples of randomized searches include Randoop,
Monkey, and Cuzz, whereas Korat is an example of systematic or enumerative search. DSE is also an
example of a systematic search: even though its first input is randomly generated, all remaining inputs
are derived by systematically solving constraints relevant to the program’s computation tree.

Third, by its very nature, DSE is a path-sensitive static analysis. The basis of its operation requires
distinguishing between different paths in a program’s computation tree.

Finally, the instrumentation in DSE is non-sampled, as it is in the case of Korat preconditions. An
example of sampled instrumentation is statistical debugging wherein the runtime overhead of tracking
all instrumented predicates without sampling is prohibitive.

65



Now that you’ve learnt how DSE works, let’s look at a few real-world examples where DSE has been
applied.

In a case study, DSE found two bugs in version 1.0.1 of SGLIB, a data structure library for C that was
inspired by the Standard Template Library from C++. Both the bugs were reported to the authors of
the library who fixed them in version 1.0.2

The first bug, in the doubly-linked list library, is a segmentation fault that occurs when a non-zero
length list is concatenated with a zero-length list. This bug was discovered in 140 iterations in under 1
second. This bug is easy to fix by putting a check on the length of the second list in the concatenation
function.

The second bug, which is a more serious one, was discovered in the hash-table library in 193 iterations
in 1 second. Specifically, DSE constructed a valid sequence of function calls which gets the hash-table
library’s is_member function into an infinite loop.

66



This table shows, for each data structure that SGLIB implements, the time that DSE took to test the
data structure in seconds, the number of iterations that DSE made, the number of branches it
executed, the branch coverage it obtained, the number of functions it executed, and the number of
bugs that it found.

Notice that the branch coverage in most cases is very high, approaching 100%. The authors of the
case study investigated the few branches that weren’t covered, and found that most of them were in
fact unreachable.

You can read more about this case study in a technical paper linked from the instructor notes.

[http://mir.cs.illinois.edu/marinov/publications/SenETAL05CUTE.pdf]

67



In another case study, DSE was applied to test a C implementation of a security protocol: the Needham
Shroeder public key protocol. This protocol is known to be vulnerable to a man-in-the-middle attack.
The implementation comprised 600 lines of code. It took DSE fewer than 13 seconds on a machine
with a 1.8 GHz CPU and 2 GB of RAM to discover this attack. In contrast, a software model checker
Verisoft that is suited for testing such protocols by using a state-space exploration technique took 8
hours.

68



The remarkable success of dynamic symbolic execution has led to open-source as well as commercial
implementations of the technique for virtually all mainstream high-level and low-level languages.
Here is a listing of a few of these implementations:

- KLEE based on the LLVM compiler which supports the C family of languages including C, C++,
Objective C, and Objective C++.

- PEX for applications written using Microsoft’s .NET framework
- jCUTE for Java programs
- Jalangi for Javascript programs, and
- SAGE and S2E for binaries on common architectures such as X86 and ARM.

69



As we illustrated using a series of examples in this lesson, DSE is useful for testing small units of code.
But it has also been applied to test entire, large, complex programs. Let’s look at one of the most
successful case studies in this category: the SAGE tool developed by Microsoft.

SAGE is an acronym for scalable automated guided execution. To date, it has discovered many
expensive security bugs in many Microsoft applications such as Windows and Office. It is used daily in
various Microsoft groups and runs continuously on 100s of machines.

What makes SAGE so useful? There are several reasons.

First, it works on large applications, not just small units. So it can detect bugs due to problems across
components.

Second, it focuses on fuzzing input files, which are a typical kind of input to many applications. For
instance, a typical input to a web browser application is an HTML file. This in turn enables SAGE to be
fully automated: for instance, a user need not specify the input format of the application.

Third, SAGE works on x86 binaries, making it easy to deploy: in particular, it is not dependent on the
programming language or build process used by the application.

You can read more about SAGE by following the links in instructor notes.

http://research.microsoft.com/en-us/um/people/pg/public_psfiles/ndss2008.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/talk-spin2009.pdf

70



Let’s look at an example of how SAGE is able to crash a real media parser application.

SAGE begins with an input media file that has 100 zero bytes. The contents of each byte are indicated
by two adjoining zeros [point to the 00 00 00 portion of the file]. A human-readable form of each byte
is also shown here on the right [point to the ….. portion of the file].

In each successive iteration, SAGE replaces a subset of these bytes with characters that it obtains by
solving the path constraint of an execution of the media parser.

For instance, in the second iteration, it replaces the first four bytes by the characters RIFF respectively,
and in the third iteration, it replaces the 9th, 10th, 11th, and 12th bytes by the characters *, *, *, and
black respectively. After a few more iterations, it generates the input file that crashes the application.

In 60 machine hours, SAGE is able to automatically find 357 such crashes corresponding to 12 unique
bugs in this media parser application.

71



Now that the lesson is coming to a close, let’s review what we have learned about dynamic symbolic
execution.

Symbolic execution is a technique for simulating the execution of a program on symbolic inputs. It
tracks symbolic constraints over such inputs to decide whether certain paths of computation are
possible. Dynamic symbolic execution, or DSE, is a hybrid between symbolic execution and concrete
execution that overcomes limitations of using either of those approaches alone.

DSE systematically generates numeric and pointer inputs in order to explore a program’s computation
tree with as much coverage as possible while eliminating redundant executions. (Recall that the
computation tree is a model of all possible paths that a program’s execution can take.) The goal of
DSE is to determine if an error is reachable under some input to the program.

DSE simultaneously tracks three pieces of information: the program’s current concrete state, the
program’s current symbolic state, and the symbolic constraints for the execution so far, called the path
condition. It uses the dynamic, concrete state to simplify the static analysis part of constraint-solving,
and it uses the static, symbolic state to guide the dynamic analysis part of selecting non-redundant
concrete inputs to exercise next. In this way, it is a hybrid between dynamic and static analysis.

Finally, DSE is complete: if it reports an error, it is certain that the error can be reached on some run of
the program (in fact, DSE can report the exact inputs to generate the error). However, unlike pure
symbolic execution, DSE has no guarantee of soundness: it might fail to report an error in a program.
Additionally, as we’ve discussed in this lesson, DSE is not guaranteed to terminate in the presence of
input-dependent loops, as these loops may unroll into infinitely many paths in the computation tree.
However, we can modify DSE to terminate after exploring a finite number of paths in the computation
tree, giving up soundness in the process.

72


