
Trusted bulletin-board emulation

Main difficulty: Some parties can cheat.

Classical result: simulation is possible if the “majority is honest”.

For example for 5 players we can tolerate at most 2 “cheaters”.

the “ideal” world a protocol
that
emulates the
ideal world

Stefan

Dziembowski

Formally Verifying
Smart Contracts

Mooly Sagiv

Tel Aviv University

And also…

Shelly Grossman
Ittai Abraham

Guy Golan-GuetaNoam Rinetzky

David Dill

Yoni Zohar

Shachar Itzhaky Yan Michalevsky

Smart Contracts

•Transactions in bitcoin are limited
– Transfer ‘X’ bitcoins from ‘Y’ to ‘Z’

•More powerful transactions
–Exchange
–Auction
–Games
–Bets
–Legal agreements

•Solution
–Store smart contracts on the blockchain
–Computer programs implement transactions
–Immutability guarantees persistence

Massive Losses due to Bugs

THE PROBLEM

CURRENT SOLUTIONS

Testing

Auditing
Manual

Costly

Incomplete

AUDITING IS INSUFFICIENT

From “A Postmortem on the Parity Multi-Sig

Library Self-Destruct”:

… multi-sig wallet code was created and audited by the

Ethereum Foundation’s DEV team, Parity technology and

others in the community

Automatic software verification

Desired Property 

Solver

Is there a behavior

of P that violates ?

Counterexample Proof

Program P

Y N

Safety
Property 

Verification
Is there a behavior

of P that violates ?

Counterexample Proof

Program P

Disillusionment in program verification 80’s

[POPL’78, CACM’79] R.A. DeMillo, R.J. Lipton, A. J. Perlis:
Social Processes and Proofs of Theorems and Programs

Rice’s Theorem 

I can’t decide!

Unknown

Challenges in program verification

• Specifying program behavior

• Complexity of program verification

–The halting problem

–Rice theorem

–The ability of simple programs to represent complex behaviors

• Complexity of realistic systems

–Huge code

–Heterogeneous code

–Missing code

The SAT Problem

• Given a propositional formula (Boolean function)

– = (a  b) ( a b  c)

• Determine if  is satisfiable

–Find a satisfying assignment or report that such does not exist

• For n variables, there are 2n possible truth assignments to be
checked
• Tools exist: Z3, Yices, CVC, …

a

b b

c c c c

0

0 0

00 001

1 1

1 1 1

1

Verification by reductions to SAT

Desired Property 

Counterexample Proof

Program P

Front-End

Formula

P  

SAT Solver

Verification by reduction to SAT

a

x:=1x:=0

b

y:=1y:=0

0 1

1

assert x==y

SAT Query:
((a  x)(a   x))


((b  y)(b   y))


((x y) (x y)
?

SAT Answer:
Satisfiable by a=0, b = 1

0

Verification by reduction to SAT

a

x:=1;b:=1x:=0;b:=0

b

y:=1y:=0

0 1

1

assert x==y

0

SAT Query:
((a  x b)(a   x   b))


((b  y)(b   y))


((x y) (x y)
?

SAT Answer:
Unsatisfiable

The SMT(Sat Modulo Theory) Problem

• Given a ground first order formula over theories(Boolean function)
•  = x, y: 2x + y  5  y < 3

• Determine if  is satisfiable
• Find a satisfying assignment or report that such does not exist

• Satisfiability becomes harder

• But tools exist: Yices, Z3, CVC, …

Verification by reductions to SMT

Desired Property 

Counterexample Proof

Program P

Front-End

Formula

P  

SMT Solver

Simple Example Token (buggy)

balance[to]=balance[to]-fee

balance[to]>=amount?

balance[to]=balance[to]-amount

balance[from]=balance[from]+amount

x. (xto  x from)  b’[x]=b[x] 
b[to] amount+fee (b’[to]=b[to]-amount-fee  b’[from]=b[from]+amount) 

b[to]<amount+fee (b’[to]=b[to]  b’[from]=b[from])

SMT Answer:
Satisfiable by
balance[to]=10,
fee=5,
amount=6
balance[from]=100

assert

T

F

Simple Example Token (corrected)

18

balance[to]amount+fee?

balance[to]=balance[to]-amount-fee

balance[from]=balance[from]+amount

SAT Answer:
Unsatisfiable

assert x. (xto  x from)  b’[x]=b[x] 
b[to] amount+fee (b’[to]=b[to]-amount-fee  b’[from]=b[from]+amount) 

b[to]<amount+fee (b’[to]=b[to]  b’[from]=b[from])

assert

T

F

More interesting contracts

• Unbounded participants

• Complicated specifications
• Higher order reasoning

• Need to handle loops

19

Minting Tokens - buggy

20

totalSupply=totalSupply+amount

SAT Answer:
Satisfiable by
balance=10,
totalSupply=10,
amount=5

assert
balance’=totalSupply’  totalSupply’=totalSupply+amount

assert

balance=totalSupply?
F

T

Minting Tokens - corrected

21

totalSupply=totalSupply+amount

SAT Answer:
Unsatisfiable

assert
balance’=totalSupply’  totalSupply’=totalSupply+amount

assert

balance=totalSupply?

balance[bank]=balance[bank]+amount

T

F

Challenge: Handling Loops

• Bounded loop instantiation
• CBMC

• Scaling

• User specified loop invariants
• Powerful

• But requires careful insights

• Automatic loop invariants inference
• Ultimately limited

• Even when checking is possible

• Limited loops

28

Summary thus far

• Program verification is powerful

• But hard to apply to complicated systems

• Modularity helps

29

Runtime Monitoring

• Enforce correctness at runtime

• Especially useful with generic required properties

• Java properties
• No out of bound array accesses

• No null dereferences

• ….

• Can we do the same for contracts?

30

MOTIVATION: EXISTING VM

Ledger:

Beneficiary Money

Alice 2100

Bob 400

…

Blockchain

DAO State:

Balance=2600

Beneficiary Money

Alice 2000

Bob 500

Thief 100

DAO

Withdraw(100$)
VM

DAO State:

Balance=0

Beneficiary Money

Alice 2000

Bob 500

Thief 0

Quality VM

Ledger:

Beneficiary Money

Alice 2100

Bob 400

…

DAO State:

Balance=2600

Beneficiary Money

Alice 2000

Bob 500

Thief 100

DAO

Withdraw(100$)
QVM

Rule violation

Rules

Blockchain

Some Generic Correctness Rules

• Effectively Callback Free (ECF) transactions
– Eliminate the DAO bug

• Immutable Ownership
–Parity #1

• Prevent Bad upgrades
–Monitor code changes and signed whitelists

–Parity #2

• A flexible framework for arbitrary rules

Effective Callback Freedom – the DAO bug

DAO::withdraw(to) {
if b[to] > 0 {
sendMoney(to, b[to]);
b[to] = 0;
}
}

Thief::uponTransfer(a) {
DAO::withdraw(Thief)
}

b[Thief]=100coins[Thief]=205

EFFECTIVE CALLBACK FREEDOM (ECF)

Withdraw start

b > 0

Call

sendMoney

Return from

sendMoney

Withdraw end

sendMoney start

Call Withdraw

Return from

Withdraw

sendMoney end

For every path there is a path without callbacks with same effect

b = 0
f

t

…

…

$100$0 $5$105

f

GIST OF DAO ATTACK

Withdraw start

b > 0

Call

sendMoney

Return from

sendMoney

Withdraw end

sendMoney start

Call Withdraw

Return from

Withdraw

sendMoney end

For every path there is a path without callbacks with same effect

t

…

…
b = 0

$100 $5$105$205

Ethereum (7/2015 — 6/2017)

Blockchain Contracts Executions Non-ECF (%)

Ethereum 342K 96M 3,321 (0.003%)

Ethereum Classic 91K 32M 2,288 (0.007%)

Each Non-ECF is an actual attack (0% False positive)

Miniscule performance overhead*

Could have prevented the DAO bug without human intervention!

Empirical Results (POPL’18)

*3.38% in time executing EVM alone – drops further in real settings

Contract Verification != Software Verification

• Relatively small number of generic required
properties are needed

• Not per-contract

• Restricted domain

– Small contracts

– Modularity due to ECF

• Feasibility of defensive checking

THE THREE ENABLERS

Complementary Approaches

• Concolic execution

• Restricted programs

•

Summary

• Virtualization is powerful

• Program verification is powerful

• Program verification is expensive

• Few Success stories

–Hardware Verification

–Operating System

–Device drivers

–Packet Filters

–Distributed protocols

• Contract verification

• Higher order programming reduces errors and enables verification

