[S)tzeife?rr:bowski TrUStEd bU“etin'bOard emUIation

the “ideal’” world a protocol

oo
that P i |
emulates the Y/ 9%/
é ideal world
o

.
L}

Main difficulty: Some parties can cheat.

Classical result: simulation is possible if the “majority is honest”.
For example for 5 players we can tolerate at most 2 “cheaters”.

Formally Verifying
Smart Contracts

Mooly Sagiv
Tel Aviv University

000

TELAVIV NU'011IN
UNIVERSITY 2'ON'TN

And also...

Technion

Israel Institute of Technology

F
TELAVIV NO'01IIN

UNIVERSITY 2AN'N Vmwa re M

Shelly Grossman Ittai Abraham ~ Shacharltzhaky payid Dill Yan Michalevsky
o -_.‘*:.Ié 'I'\Mi ;
‘*’ ' ""Qq

s

Yoni Zohar

Smart Contracts

*Transactions in bitcoin are limited
— Transfer ‘X’ bitcoins from ‘Y’ to ‘7’

* More powerful transactions
—Exchange
—Auction
—Games
—Bets
—Legal agreements
*Solution
—Store smart contracts on the blockchain
—Computer programs implement transactions
—Immutability guarantees persistence

THE PROBLEM

Massive Losses due to Bugs

ﬁ alex van de sande ¥ 2 Follow G g?nrufl Aréoz 'C — j' 5
| repeat. There was an attack on the DAO so Someone stole ~$32M (~153k ether) from
we launched our white hat counter attack. More three multisig wallets. More info and blog
updates will follow post coming soon.

etherscan.io/address/0xb376 ...
12:08 PM - 19 Jul 2017

46 51 PRl L LSP Y

Parity Technologies .
\ParityTech

UPDATE: A user exploited an issue and
thus removed the library code, as it
seems unaware of the consequences.

2:51 AM - 7 Nov 2017

CURRENT SOLUTIONS

O -y Manual
Auditing @-5

-V

~ Costly

Testing

Incomplete

AUDITING IS INSUFFICIENT

. Parity Technologies y

UPDATE: A user exploited an issue and
thus removed the library code, as it
seems unaware of the consequences.

From “A Postmortem on the Parity Multi-Sig
Library Self-Destruct”:

... multi-sig wallet code was created and audited by the
Ethereum Foundation’s DEV team, Parity technology and
others in the community

Automatic software verification

@ed Prope@

Solver

> Is there a behavior
of P that violates ¢?

—Z

Proof

Disillusionment in program verification 80’s

Program P Safety
Property ¢

Rice’s Theorem =»

Verification e
Is there a behavior »
of P that violates @? | ™

Counterexample

[POPL'78, CACM’79] R.A. DeMiillo, R.J. Lipton, A. J. Perlis:
Social Processes and Proofs of Theorems and Programs

Challenges in program verification

* Specifying program behavior
* Complexity of program verification
—The halting problem

—Rice theorem
—The ability of simple programs to represent complex behaviors

* Complexity of realistic systems
—Huge code

—Heterogeneous code
—Mlissing code

The SAT Problem

* Given a propositional formula (Boolean function)
—p=(avb)A(-av-bve)
* Determine if @ is satisfiable

—Find a satisfying assignment or report that such does not exist

* For n variables, there are 2" possible truth assignments to be

checked
e Tools exist: Z3, Yices, CV(, ...

Verification by reductions to SAT

< Program P > <Desired Property (p>

Formula
P]] /\—

Counterexample Proof

e

Verification by reduction to SAT

SAT Query:

SAT Answer:
(@ Ax)v(=a A =x)) Satisfiable by a=0, b = 1
A ‘
(b Ay)v(=b A —=Yy))
A

((x A—y) V(=X AY)
?

assert x==y

Verification by reduction to SAT

SAT Query:
((a A X Ab)V(—a A= xA—=D))
A
(b Ay)v(=bA=y))
A

((x A—y) V(=X AY)
?

assert x==y ﬁ

SAT Answer:
Unsatisfiable

The SMT(Sat Modulo Theory) Problem

Given a ground first order formula over theories(Boolean function)
e @=3X,y:2x+y=>5Ay<3
Determine if ¢ is satisfiable
* Find a satisfying assignment or report that such does not exist
Satisfiability becomes harder
But tools exist: Yices, Z3, CV(C, ...

Verification by reductions to SMT

< Program P > <Desired Property (p>

Formula
P]] /\—

Counterexample Proof

Simple Example Token (buggy)

balance[to]=balance[to]-fee

g SMT Answer:
balance[to]>=amount? Satisfiable by
balance[to]=10, &
balance[to]=balance[to]-amount fee=5,
amount=6
balance[from]=balance[from]+amount balance[from]=100

assert Vx. (x£to A x from) = b’ [x]=b[x] A
b[to] 2amount+fee =(b’[to]=b[to]-amount-fee A b’[from]=b[from]+amount) A
b[to]<amount+fee =(b’[to]=b[to] A b’[from]=b[from])

Simple Example Token (corrected)

balance[to]>amount+fee?

SAT Answer: é

balance[to]=balance[to]-amount-fee o
Unsatisfiable

balance[from]=balance[from]+amount

assert Vx. (xto A x== from) = b’[x]=bx] A
b[to] 2amount+fee =(b’[to]=b[to]-amount-fee A b’[from]=b[from]+amount) A
b[to]<amount+fee =(b’[to]=b[to] A b’[from]=b[from])

18

More interesting contracts

* Unbounded participants

* Complicated specifications
* Higher order reasoning

* Need to handle loops

Minting Tokens - buggy

F
2balance=totalSupply?

totalSupply=totalSupply+amount

SAT Answer:
Satisfiable by
>balance=10,
totalSupply=10,
amount=5

assert
>.balance’=totalSupply’ A totalSupply’=totalSupply+amount

20

Minting Tokens - corrected

>balance=totalSupply?

totalSupply=totalSupply+amount

balance[bank]=balance[bank]+amount

SAT Answer:
Unsatisfiable

assert
>balance’=totalSupply’ A totalSupply’=totalSupply+amount

é

21

Challenge: Handling Loops

* Bounded loop instantiation
* CBMC
* Scaling

e User specified loop invariants
* Powerful
* But requires careful insights

 Automatic loop invariants inference
e Ultimately limited
* Even when checking is possible

* Limited loops

Summary thus far

* Program verification is powerful
* But hard to apply to complicated systems
* Modularity helps

Runtime Monitoring

* Enforce correctness at runtime
 Especially useful with generic required properties

* Java properties
* No out of bound array accesses
* No null dereferences

e Can we do the same for contracts?

MOTIVATION: EXISTING VM

Blockchain
4) Withdraw(100S)\
VM) 'w‘
|
DAO
DAQO State:
Balance=0
Beneficiary Money
Alice 2000
Bob 500
Thief 0

Quality VM

Blockchain \ . Rule violation

y

)
‘,”*
%)

Rules

DAO

DAQO State:
Balance=2600

Beneficiary Money
Alice 2000

Bob 500

N [ief 100

l\
\
\—/\

Some Generic Correctness Rules

e Effectively Callback Free (ECF) transactions
— Eliminate the DAO bug

* Immutable Ownership
—Parity #1

* Prevent Bad upgrades

—Monitor code changes and signed whitelists
—Parity #2

* A flexible framework for arbitrary rules

Effective Callback Freedom — the DAO bug

DAO: :withdraw(to) {
if b[to] > 0 {
» sendMoney(to, b[to]);

b[to] = 0;
}
}

Thief::uponTransfer(a) {
DAO: :withdraw(Thief)

¥

coins[Thief]=205 b[Thief]=100

EFFECTIVE CALLBACK FREEDOM (ECF)

For every path there is a path without callbacks with same effect

‘ dMoney SD

Return from
““““ Withdraw

LS
.
.
]
]
.
]
.
.
.
]
.
.
]
.
]
.
]
]
.
“,
&,

«*
.
.
.
.
13
.
.
.
.
.
.
.
.
.
.
.
.
*
.
*
.

SendMoney eD

*
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o
.

Withdraw enf

GIST OF DAO ATTACK

- .
a a - a [] ara a a a \ Aara a \ [] AATATN A -
w v v VAW A wiw A w I

C w w VA A

Rewmnfrom ~N_ |
sendMoney A%, | e
o ‘ed A

b0 >

Co
v | ECF wit hO\-“' hum sendMoney end
Withdraw end
/

Empirical Results (POPL’18)

Ethereum (7/2015 — 6/2017)

Blockchain Contracts Executions Non-ECF (%)

Ethereum 342K 96M 3,321 (0.003%)

Ethereum Classic 91K 32M 2,288 (0.007%)

Each Non-ECF is an actual attack (0% False positive)

Miniscule performance overhead*

Could have prevented the DAO bug without human intervention!

*3.38% in time executing EVM alone — drops further in real settings

THE THREE ENABLERS

* Relatively small number of generic required
properties are needed

* Not per-contract

e Restricted domain

— Small contracts
— Modularity due to ECF

* Feasibility of defensive checking

Contract Verification != Software Verification

Complementary Approaches

e Concolic execution
e Restricted programs

Summary

* Virtualization is powerful
* Program verification is powerful
* Program verification is expensive
* Few Success stories

—Hardware Verification

—Operating System

—Device drivers

—Packet Filters

—Distributed protocols
e Contract verification
* Higher order programming reduces errors and enables verification

