Practical Applications of SAT

Emina Torlak
emina@cs.washington.edu

Today

Past 2 lectures

- The theory and mechanics of SAT solving

Today

- Practical applications of SAT
- Variants of the SAT problem
- Motivating the next lecture on SMT

But first ...

- A brief Q\&A session for Homework I

A brief history of SAT solving and applications

10,000K

A brief history of SAT solving and applications

A brief history of SAT solving and applications

A brief history of SAT solving and applications

A brief history of SAT solving and applications

A brief history of SAT solving and applications

A brief history of SAT solving and applications

Bounded Model Checking (BMC) \& Configuration Management

Bounded Model Checking (in general)

Given a system and a property, BMC checks if the property is satisfied by all executions of the system with $\leq \mathrm{k}$ steps, on all inputs of size $\leq n$.

Bounded Model Checking (in general)

Given a system and a property, BMC checks if the property is satisfied by all executions of the system with $\leq k$ steps, on all inputs of size $\leq n$.

We will focus on safety properties (i.e., making sure a bad state, such as an assertion violation, is not reached).

Bounded Model Checking (in general)

Testing: checks a few executions of arbitrary size
low confidence
BMC: checks all executions of size $\leq k$

Verification: checks all executions of every size
low human labor
high confidence
high human labor

Bounded Model Checking (in general)

Testing: checks a few executions of arbitrary size
low confidence
low human labor

> BMC: checks all executions of size $\leq k$

The small scope hypothesis says that many bugs can be triggered with small inputs and executions.

Verification: checks all executions of every size
high confidence
high human labor

BMC by example

BMC by example

```
int daysToYear(int days) {
    int year = 1980;
    while (days > 365) {
        if (isLeapYear(year)) {
            if (days > 366) {
            days -= 366;
                year += 1;
            }
        } else {
            days -= 365;
            year += 1;
        }
    }
    return year;
}
```


The Zune Bug: on

December 3I, 2008, all first generation Zune players from Microsoft became unresponsive because of this code. What's wrong?

BMC by example

```
int daysToYear(int days) {
    int year = 1980;
    while (days > 365) {
        if (isLeapYear(year)) {
        if (days > 366) {
            days -= 366;
                year += 1;
            }
        } else {
            days -= 365;
            year += 1;
        }
    }
    return year;
}
```

Infinite loop triggered on the last day of every leap year.

BMC by example

```
int daysToYear(int days) {
    int year = 1980;
    while (days > 365) {
        int oldDays = days;
        if (isLeapYear(year)) {
        if (days > 366) {
            days -= 366;
                year += 1;
            }
        } else {
            days -= 365;
            year += 1;
        }
        assert days < oldDays;
    }
    return year;
}
```

A desired safety property: the value of the days variable decreases in every loop iteration.

BMC step I of 4: finitize loops \& inline calls

```
int daysToYear(int days) {
    int year = 1980;
    while (days > 365) {
        int oldDays = days;
        if (isLeapYear(year)) {
        if (days > 366) {
                days -= 366;
                year += 1;
            }
        } else {
            days -= 365;
            year += 1;
        }
        assert days < oldDays;
    }
    return year;
}
```


BMC step I of 4: finitize loops \& inline calls

```
int daysToYear(int days) {
    int year = 1980;
    if (days > 365) {
        int oldDays = days;
        if (isLeapYear(year)) {
            if (days > 366) {
                days -= 366;
                year += 1;
            }
        } else {
            days -= 365;
            year += 1;
        }
        assert days < oldDays;
        assert days <= 365;
    }
    return year;
}
```

- Unwind all loops k times (e.g., $\mathrm{k}=\mathrm{l}$), and add an unwinding assertion after each.

BMC step I of 4: finitize loops \& inline calls

```
int daysToYear(int days) {
    int year = 1980;
    if (days > 365) {
        int oldDays = days;
        if (isLeapYear(year)) {
            if (days > 366) {
                days -= 366;
                year += 1;
            }
        } else {
            days -= 365;
            year += 1;
        }
        assert days < oldDays;
        assert days <= 365;
    }
    return year;
}
```

- Unwind all loops k times (e.g., $\mathrm{k}=\mathrm{l}$), and add an unwinding assertion after each.
- If a CEX violates a program assertion, we have found a buggy behavior of length $\leq k$.

BMC step I of 4: finitize loops \& inline calls

```
int daysToYear(int days) {
    int year = 1980;
    if (days > 365) {
        int oldDays = days;
        if (isLeapYear(year)) {
            if (days > 366) {
                days -= 366;
                year += 1;
            }
        } else {
            days -= 365;
            year += 1;
        }
        assert days < oldDays;
        assert days <= 365;
    }
    return year;
}
```

- Unwind all loops k times (e.g., $\mathrm{k}=\mathrm{l}$), and add an unwinding assertion after each.
- If a CEX violates a program assertion, we have found a buggy behavior of length $\leq k$.
- If a CEX violates an unwinding assertion, the program has no buggy behavior of length $\leq k$, but it may have a longer one.

BMC step I of 4: finitize loops \& inline calls

```
int daysToYear(int days) {
    int year = 1980;
    if (days > 365) {
        int oldDays = days;
        if (isLeapYear(year)) {
            if (days > 366) {
                days -= 366;
                year += 1;
            }
        } else {
            days -= 365;
            year += 1;
        }
        assert days < oldDays;
        assert days <= 365;
    }
    return year;
}
```

- Unwind all loops k times (e.g., $\mathrm{k}=\mathrm{l}$), and add an unwinding assertion after each.
- If a CEX violates a program assertion, we have found a buggy behavior of length $\leq k$.
- If a CEX violates an unwinding assertion, the program has no buggy behavior of length $\leq k$, but it may have a longer one.
- If there is no CEX, the program is correct for all k !

BMC step I of 4: finitize loops \& inline calls

```
int daysToYear(int days) {
    int year = 1980;
    if (days > 365) {
        int oldDays = days;
        if (isLeapYear(year)) {
        if (days > 366) {
                days -= 366;
                year += 1;
            }
        } else {
            days -= 365;
            year += 1;
        }
        assert days < oldDays;
        assert days <= 365;
    }
    return year;
}
```

Assume call to isLeapYear is inlined (replaced with the procedure body). We'll keep it for readability.

BMC step 2 of 4: eliminate side effects

```
int daysToYear(int days) {
    int year = 1980;
    if (days > 365) {
        int oldDays = days;
        if (isLeapYear(year)) {
                if (days > 366) {
                days -= 366;
                year += 1;
            }
        } else {
                days -= 365;
            year += 1;
        }
        assert days < oldDays;
        assert days <= 365;
    }
    return year;
}
```


BMC step 2 of 4: eliminate side effects

```
int days;
int year = 1980;
if (days > 365) {
    int oldDays = days;
    if (isLeapYear(year)) {
        if (days > 366) {
            days = days - 366;
            year = year + 1;
        }
    } else {
            days = days - 365;
            year = year + 1;
    }
    assert days < oldDays;
    assert days <= 365;
}
return year;
```


BMC step 2 of 4: eliminate side effects

```
int days;
int year = 1980;
if (days > 365) {
    int oldDays = days;
    if (isLeapYear(year)) {
        if (days > 366) {
            days = days - 366;
            year = year + 1;
        }
    } else {
        days = days - 365;
        year = year + 1;
    }
    assert days < oldDays;
    assert days <= 365;
}
return year;
```

Convert to Static Single Assignment (SSA) form:

- Replace each assignment to a variable v with a definition of a fresh variable v_{i}.
- Change uses of variables so that they refer to the correct definition (version).
- Make conditional dependences explicit with gated φ nodes.

BMC step 2 of 4: eliminate side effects

```
int days0;
int year0 = 1980;
if (days0 > 365) {
    int oldDays0 = days0;
    if (isLeapYear(yearo)) {
        if (days0 > 366) {
            days}1 = days0 - 366
            year_ = year0 + 1;
        }
    } else {
        days}3=\mp@subsup{d}{0}{\prime
        year3 = year0 + 1;
    }
    assert days4 < oldDays0;
    assert days4 <= 365;
}
return year5;
```

Convert to Static Single Assignment (SSA) form:

- Replace each assignment to a variable v with a definition of a fresh variable v_{i}.
- Change uses of variables so that they refer to the correct definition (version).
- Make conditional dependences explicit with gated φ nodes.

BMC step 2 of 4: eliminate side effects

```
int days0;
int year0 = 1980;
boolean go = (days0 > 365);
int oldDays0 = days0;
boolean g}\mp@subsup{g}{1}{}= isLeapYear(yearø)
boolean g2 = days0 > 366;
days}1 = days0 - 366
year1 = year0 + 1;
days}2=\varphi(\mp@subsup{g}{1}{}&& \mp@subsup{g}{2}{},\mp@subsup{\mathrm{ days}}{1}{},\mp@subsup{d}{}{\prime}\mp@subsup{d}{0}{\prime}\mp@subsup{s}{0}{})
year_ = \varphi(g1 && g2, year1, year0);
days3 = days0 - 365;
year3 = year0 + 1;
days4 = \varphi(g1, days2, days3);
year4 = \varphi(g1, year2, year3);
assert days4 < oldDays0;
assert days4 <= 365;
year5 = \varphi(g0, year4, year0);
return year5;
```

Convert to Static Single Assignment (SSA) form:

- Replace each assignment to a variable v with a definition of a fresh variable v_{i}.
- Change uses of variables so that they refer to the correct definition (version).
- Make conditional dependences explicit with gated φ nodes.

BMC step 2 of 4: eliminate side effects

```
int days0;
int year0 = 1980;
if (days0 > 365) {
    int oldDays0 = days0;
    if (isLeapYear(yearo)) {
        if (days0 > 366) {
            days}1 = days0 - 366
            year_ = year0 + 1;
        }
    } else {
        days}3=\mp@subsup{d}{0}{\prime
        year3 = year0 + 1;
    }
    assert days4 < oldDays0;
    assert days4 <= 365;
}
return year4;
```

```
int days0;
int year0 = 1980;
boolean go = (days0 > 365);
int oldDays0 = days0;
boolean g1 = isLeapYear(yearo);
boolean g}\mp@subsup{g}{2}{}=\mathrm{ days0 > 366;
days}1 = days0 - 366
year1 = yearo + 1;
days}2=\varphi(\mp@subsup{g}{1}{}&& g2, days1, days0)
year_ = \varphi(g1 && g2, year1, year0);
days3 = days0 - 365;
year3 = year0 + 1;
days4 = \varphi(g1, days2, days3);
year4 = \varphi(g1, year2, year3);
assert days4 < oldDays0;
assert days4 <= 365;
year5 = \varphi(g0, year4, year0);
return year5;
```


BMC step 3 of 4: convert into equations

```
int dayso;
int yearo = 1980;
boolean go = (days0 > 365);
int oldDays0 = days0;
boolean g1 = isLeapYear(yearo);
boolean g2 = days0 > 366;
days}\mp@subsup{}{1}{}=\mp@subsup{d}{}{\mathrm{ days}}0-366
year1 = yearo + 1;
days}\mp@subsup{2}{2}{=}\varphi(\mp@subsup{g}{1}{}&&\mp@subsup{g}{2}{},\mp@subsup{\mathrm{ days}}{1}{}, days0)
year2 = \varphi(g1&& g2, year (, yearo);
days}\mp@subsup{3}{3}{= days}0-365
year3 = year0 + 1;
days}4=\varphi(\mp@subsup{g}{1}{},\mp@subsup{\mathrm{ days}}{2}{\prime},\mp@subsup{\mathrm{ days}}{3}{\prime})
year4 = \varphi(g1, year2, year3);
assert days4 < oldDays}\mp@subsup{\mp@code{0}}{0}{
assert days4 <= 365;
year5 = \varphi(go, year4, yearo);
return year5;
```


BMC step 3 of 4: convert into equations

```
yearo = 1980
go = (days}0>365) ^
oldDays0 = days0 ^
g}\mp@subsup{g}{1}{\prime
g}\mp@subsup{g}{2}{= days}0>366
days}1=\mp@subsup{d}{1}{\primeyy
year1 = yearo + 1 ^
days}2= ite(g1 ^ g2, days1, days0) ^
```



```
days3 = days0 - 365 ^
year3 = yearo + 1 ^
days4 = ite(g1, days2, days}\mp@subsup{)}{3}{})
year4 = ite(g1, year2, year3) ^
year5 = ite(g0, year4, year0) ^
(\neg(days}4<< oldDays0) v
    \neg(\mp@subsup{days}{4}{<= 365))}
```

A solution to these equations is a sound counterexample: an interpretation for all logical variables that satisfies the program semantics (for up to k unwindings) but violates at least one of the assertions.

BMC step 4 of 4: convert into CNF

```
year_ = year0 + 1
```


BMC step 4 of 4: convert into CNF

```
year_ = year0 + 1
Represent numbers as arrays of bits ...
\[
\text { yearo }=\underset{313029}{000} \ldots 000
\]
```


BMC step 4 of 4: convert into CNF

$$
\text { year }_{1}=\text { year } r_{0}+1
$$

$$
\text { yearo }=\underset{313029}{000} \ldots \underset{210}{000}
$$

Represent numbers as arrays of bits, and create one propositional variable per bit for each number.

BMC step 4 of 4: convert into CNF

$$
\text { year }_{1}=\text { year } r_{0}+1
$$

Represent numbers as arrays of bits, and create

$$
\text { yearo }={ }_{313029}^{000} \ldots{ }_{210}^{000}
$$ one propositional variable per bit for each number.

BMC step 4 of 4: convert into CNF

$$
\text { year }_{1}=\text { year }_{0}+1
$$

Represent numbers as arrays of bits, and create

$$
\text { yearo }=\underset{313029}{000} \ldots \underset{210}{0} 000
$$ one propositional variable per bit for each number.

BMC counterexample for $k=I$

```
int daysToYear(int days)
    int year = 1980;
    while (days > 365) {
        int oldDays = days;
        if (isLeapYear(year)) {
        if (days > 366) {
                days -= 366;
                year += 1;
            }
        } else {
            days -= 365;
            year += 1;
        }
        assert days < oldDays;
    }
    return year;
}
```


Bounded Model Checking (BMC) \& Configuration Management

Configuration Management

Given a configuration, consisting of a set of components, their dependencies, and conflicts:

- Decide if a new component can be added to the configuration.
- Add the component while optimizing some linear function.
- If the component cannot be added, find a way to add it by removing as few conflicting components from the current configuration as possible.
maven

Configuration Management

Given a configuration, consisting of a set of components, their dependencies, and conflicts:

- Decide if a new component can be added to the configuration.
- Add the component while optimizing some linear function.
- If the component cannot be added, find a way to add it by removing as few conflicting components from the current configuration as possible.

Configuration Management

Given a configuration, consisting of a set of components, their dependencies, and conflicts:

- Decide if a new component can be added to the configuration.
- Add the component while optimizing

Configuration Management

Given a configuration, consisting of a set of components, their dependencies, and conflicts:

- Decide if a new component can be added to the configuration.
- Add the component while optimizing some linear function.
- If the component cannot be added, find a way to add it by removing as
maven

SAT

Pseudo-Boolean Constraints

Partial (Weighted) MaxSAT few conflicting components from the current configuration as possible.

Deciding if a component can be installed

Conflict: d and e cannot both be installed.

Deciding if a component can be installed

To install a, CNF constraints are:

Conflict: d and e cannot both be installed.

Deciding if a component can be installed

To install a, CNF constraints are:
$(\neg a \vee b) \wedge(\neg a \vee c) \wedge(\neg a \vee z) \wedge$

Conflict: d and e cannot both be installed.

Deciding if a component can be installed

To install a, CNF constraints are:
$(\neg a \vee b) \wedge(\neg a \vee c) \wedge(\neg a \vee z) \wedge$
$(\neg b \vee d) \wedge$

Conflict: d and e cannot both be installed.

Deciding if a component can be installed

To install a, CNF constraints are:
$(\neg a \vee b) \wedge(\neg a \vee c) \wedge(\neg a \vee z) \wedge$
$(\neg b \vee d) \wedge$
$(\neg c \vee d \vee e) \wedge(\neg c \vee f \vee g) \wedge$

Conflict: d and e cannot both be installed.

Deciding if a component can be installed

To install a, CNF constraints are:
$(\neg a \vee b) \wedge(\neg a \vee c) \wedge(\neg a \vee z) \wedge$
$(\neg b \vee d) \wedge$
$(\neg c \vee d \vee e) \wedge(\neg c \vee f \vee g) \wedge$
$(\neg d \vee \neg e) \wedge$

Conflict: d and e cannot both be installed.

Deciding if a component can be installed

To install a, CNF constraints are:
$(\neg a \vee b) \wedge(\neg a \vee c) \wedge(\neg a \vee z) \wedge$ $(\neg b \vee d) \wedge$
$(\neg c \vee d \vee e) \wedge(\neg c \vee f \vee g) \wedge$ $(\neg d \vee \neg e) \wedge$
$(\neg y \vee z) \wedge$

Conflict: d and e cannot both be installed.

Deciding if a component can be installed

To install a, CNF constraints are:
$(\neg a \vee b) \wedge(\neg a \vee c) \wedge(\neg a \vee z) \wedge$ $(\neg b \vee d) \wedge$
$(\neg c \vee d \vee e) \wedge(\neg c \vee f \vee g) \wedge$ $(\neg d \vee \neg e) \wedge$
$(\neg y \vee z) \wedge$
$a \wedge z$

Conflict: d and e cannot both be installed.

Optimal installation

Optimal installation

Assume f and g are 5 MB and 2 MB each, and all other components are IMB. To install a, while minimizing total size, pseudo-boolean constraints are:

Pseudo-boolean solvers accept a linear function to minimize, in addition to a (weighted) CNF.

Optimal installation

Assume f and g are 5 MB and 2 MB each, and all other components are IMB. To install a, while minimizing total size, pseudo-boolean constraints are:

$$
\begin{aligned}
& \min c_{|x|}+\ldots+c_{n} x_{n} \\
& a_{| |} x_{\mid}+\ldots+a_{\mid n} x_{n} \geq b_{\mid} \\
& \ldots \\
& a_{k \mid} x_{\mid}+\ldots+a_{k n} x_{n} \geq b_{k}
\end{aligned}
$$

Optimal installation

$$
\begin{aligned}
& \min c_{\mid} x_{\mid}+\ldots+c_{n} x_{n} \\
& a_{| |} x_{\mid}+\ldots+a_{\mid n} x_{n} \geq b_{\mid}
\end{aligned}
$$

$$
a_{k \mid} x_{1}+\ldots+a_{k n} x_{n} \geq b_{k}
$$

Assume f and g are $5 M B$ and $2 M B$ each, and all other components are IMB. To install a, while minimizing total size, pseudo-boolean constraints are:
min $a+b+c+d+e+5 f+2 g+y+0 z$
$(-a+b \geq 0) \wedge(-a+c \geq 0) \wedge(-a+z \geq 0)$
$(-b+d \geq 0) \wedge$
$(-c+d+e \geq 0) \wedge(-c+f+g \geq 0) \wedge$
$(-d+-e \geq-l) \wedge$
$(-y+z \geq 0) \wedge$
$(a \geq I) \wedge(z \geq I)$

Installation in the presence of conflicts

Installation in the presence of conflicts

a cannot be installed because it requires b, which requires d, which conflicts with e.

Installation in the presence of conflicts

To install a, while minimizing the number of removed components, Partial MaxSAT constraints are:
hard: $(\neg a \vee b) \wedge(\neg a \vee c) \wedge(\neg a \vee z) \wedge$ $(\neg b \vee d) \wedge$
$(\neg c \vee d \vee e) \wedge(\neg c \vee f \vee g) \wedge$
$(\neg d \vee \neg e) \wedge(\neg y \vee z) \wedge a$
soft: $e \wedge z$

Partial MaxSAT solver takes as input a set of hard clauses and a set of soft clauses, and it produces an assignment that satisfies all hard clauses and the greatest number of soft clauses.

Summary

Today

- SAT solvers have been used successfully in many applications \& domains
- But reducing problems to SAT is a lot like programming in assembly ...
- We need higher-level logics!

Next lecture

- On to richer logics: introduction to Satisfiability Modulo Theories (SMT)

