Abstract Interpretation
Işll Dillig

Key Idea: Over-approximation

- Abstract interpretation is a framework for computing over-approximations of program states

- Cannot reason about the exact program behavior due to undecidability (and also for scalability reasons)
- But we can obtain a conservative over-approximation and this can be enough to prove program correctness

The AI Recipe

Abstract interpretation provides a recipe for computing over-approximations of program behavior

1. Define abstract domain - fixes "shape" of the invariants

- e.g., $c_{1} \leq x \leq c_{2}$ (intervals) or $\pm x \pm y \leq c$ (octagons)

2. Define abstract semantics (transformers)

- Define how to symbolically execute each statement in the chosen abstract domain
- Must be sound wrt to concrete semantics

3. Iterate abstract transformers until fixed point

- The fixed-point is an over-approximation of program behavior

Overview

- Deductive verifiers require annotations (e.g., loop invariants) from user
- Fortunately, many techniques that can automatically learn loop invariants
- A common framework for this purpose is Abstract Interpretation (AI)
- Abstract interpretation forms the basis of most static analyzers

Motivating Example

proc MC(n :int) returns (r :int) var t1:int, t2:int; begin	Invariants per program point
	(automatically computed):
	top
if ($n>100$) then	$\mathrm{n}-101 \geq 0$
else	$-\mathrm{n}+\mathrm{r}+10=0 ; \mathrm{n}-101 \geq 0$
$\mathrm{t} 1=\mathrm{n}+11$;	$-\mathrm{n}+100 \geq 0$
t2 $=$ MC(t1);	-n+t1-11 $=0 ;-\mathrm{n}+100 \geq 0$
$r=M C(t 2)$;	
endif; end	$\begin{aligned} & -\mathrm{n}+\mathrm{t} 1-11=0 ;-\mathrm{n}+100 \geq 0 ; \\ & -\mathrm{n}+\mathrm{t} 2-1 \geq 0 ; \mathrm{t} 2-91 \geq 0 \end{aligned}$
var a:int, b:int;	$\begin{aligned} & -\mathrm{n}+\mathrm{t} 1-11=0 ;-\mathrm{n}+100 \geq 0 ;-\mathrm{n}+\mathrm{t} 2-1 \geq 0 ; \\ & \mathrm{t} 2-91 \geq 0 ; \mathrm{r} 2+10 \geq 0 ; \mathrm{r}-91 \geq 0 \end{aligned}$
begin	$-\mathrm{n}+\mathrm{r}+10 \geq 0 ; r-91 \geq 0$
end	top
	$-\mathrm{a}+\mathrm{b}+10 \geq 0 ; \mathrm{b}-91 \geq 0$

- What does this function do?
- Annotations computed automatically using an AI tool (Apron)

Simple Example: Sign Domain

- Suppose we want to infer invariants of the form $x \bowtie 0$ where $\bowtie \in\{\geq,=,>,<\}$ (i.e., zero, non-negative, positive, negative)
- This corresponds to the following abstract domain represented as lattice:

- Lattice is a partially ordered set (S, \sqsubseteq) where each pair of elements has a least upper bound or join (\sqcup)

Abstract Interpetat

Concretization and Abstraction Functions

- The "meaning" of abstract domain is given by abstraction and concretization functions that relate concrete and abstract values
- Concretization function (γ) maps each abstract value to sets of concrete elements
- $\gamma($ pos $)=\{x \mid x \in \mathbb{Z} \wedge x>0\}$
- Abstraction function (α) maps sets of concrete elements to the most precise value in the abstract domain
- $\alpha(\{2,10,0\})=$ non-neg
- $\alpha(\{3,99\})=$ pos
- $\alpha(\{-3,2\})=\top$

Step 2: Abstract Semantics

- Given abstract domain, α, γ, need to define abstract transformers (i.e., semantics) for each statement
- Describes how statements affect our abstraction
- Abstract counter-part of operational semantics rules

Soundness of Abstract Transformers

- Important requirement: Abstract semantics must be sound wrt (i.e., faithfully models) the concrete semantics
- If F is the concrete transformer and \hat{F} is its abstract counterpart, soundness of \hat{F} means:

$$
\forall x \in D, \forall x \in \hat{D} . \alpha(x) \sqsubseteq \hat{x} \Rightarrow \alpha(F(x)) \sqsubseteq \hat{F}(\hat{x})
$$

- If \hat{x} is an overapproximation of x, then $\hat{F}(\hat{x})$ is an over-approximation of $F(x)$

Requirement: Galois Connection

- Important requirement: concrete domain D and abstract domain \hat{D} must be related through Galois connection:

$$
\forall x \in D, \forall \hat{x} \in \hat{D} . \alpha(x) \sqsubseteq \hat{x} \Leftrightarrow x \sqsubseteq \gamma(\hat{x})
$$

- Intuitively, this says that α, γ respect the orderings of D, \hat{D}

Back to Our Example

- For our sign analysis, we can define abstract transformer for $\mathrm{x}=\mathrm{y}+\mathrm{z}$ as follows:

	pos	neg	zero	non-neg	T	\perp
pos	pos	T	pos	pos	T	\perp
neg	T	neg	neg	T	T	\perp
zero	pos	neg	zero	non-neg	T	\perp
non-neg	pos	T	non-neg	non-neg	T	\perp
T	T	T	T	T	T	\perp
\perp						

Putting It All Together

Fixed-point Computations

- Fixed-point computation: Repeated symbolic execution of the program using abstract semantics until our approximation of the program reaches an equilibrium:

$$
\bigsqcup_{i \in \mathbb{N}} \hat{F}^{i}(\perp)
$$

- Least fixed-point: Start with underapproximation and grow the approximation until it stops growing

- Assuming correctness of your abstract semantics, the least fixed point is an overapproximation of the program!
$\underset{\square}{\square \text { Asl Dilis. }}$

Termination of Fixed Point Computation

- In this example, we quickly reached least fixed point - but does this computation always terminate?
- Yes if the lattice has finite height; otherwise, it might not
- Unfortunately, many interesting domains do not have this property, so we need widening operators for convergence.

Performing Least Fixed Point Computation

- Represent program as a control-flow graph
- Want to compute abstract values at every program point
- Initialize all abstract states to \perp
- Repeat until no abstract state changes at any program point:
- Compute abstract state on entry to a basic block B by taking the join of B's predecessors
- Symbolically execute each basic block using abstract semantics

Abstract Intepretation
14/27

Fixed-Point Computation

Interval Analysis

- In the interval domain, abstract values are of the form $\left[c_{1}, c_{2}\right]$ where c_{1} is a lower bound and c_{2} has an upper bound
- If the abstract value for x is $[1,3]$ at some program point P, this means $1 \leq x \leq 3$ is an invariant of P

Widening

- If abstract domain does not have this property, we need a widening ∇ operator that forces convergence
- Conditions on ∇ :

1. $\forall a, b \in \hat{D} . a \sqcup b \sqsubseteq a \nabla b$
2. For all increasing chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$, the ascending chaing $d_{0}^{\nabla} \sqsubseteq d_{1}^{\nabla} \sqsubseteq \ldots$ eventually stabilizes where $d_{0}^{\nabla}=d_{0}$ and

$$
d_{i+1}^{\nabla}=d_{i}^{\nabla} \nabla d_{i+1}
$$

- Overapproximate Ifp by using widening operator rather than join \Rightarrow sound and guaranteed to terminate
- This is called post-fixed-point

Example with Widening

Narrowing

- Idea: After finding a post-fixed-poing (using widening), have a second pass using a narrowing operator
- Narrowing operator \triangle must satisfy the following conditions:

1. $\forall x, y \in \hat{D} .(y \sqsubseteq x) \Rightarrow y \sqsubseteq(x \Delta y) \sqsubseteq x$
2. For all decreasing chains $x_{0} \sqsupseteq x_{1} \sqsupseteq \ldots$, the sequence $y_{0}=x_{0}, \ldots y_{i+1}=y_{i} \triangle x_{i+1}$ converges

- For interval domain, we can define \triangle as follows:

$$
\begin{aligned}
{[a, b] \triangle \perp } & =\perp \\
\perp \triangle[a, b] & =\perp \\
{[a, b] \triangle[c, d] } & =[(a=-\infty ? c: a),(b=\infty ? d: b)]
\end{aligned}
$$

Widening in Interval Domain

- For the interval domain, we can define the following simple widening operator:

$$
\begin{aligned}
{[a, b] \nabla \perp } & =[a, b] \\
\perp \nabla[a, b] & =[a, b] \\
{[a, b] \nabla[c, d] } & =[(c<a ?-\infty: a),(b<d ?+\infty: b)]
\end{aligned}
$$

- $[1,2] \nabla[0,2]=$
- $[0,2] \nabla[1,2]=$
- $[1,5] \nabla[1,5]=$
- $[2,3] \nabla[2,4]=$

Isll Dilife
Abstract Intepretation

Motivation for Narrowing

- In many cases, widening overshoots and generates imprecise results
- Consider this example:
$\mathrm{x}=1$;
while(*) \{
$\mathrm{x}=2$;
\}
- After widening, x 's abstract value will be $[1, \infty]$ after the loop; but more precise value is $[1,2]$

Isl Dilig. Abstract Intepretation

Example with Narrowing

Relational Abstract Domains

- Both the sign and interval domain are non-relational domains (i.e., do not relate different program variables)
- Relational domains track relationships between variables and are more powerful
- A motivating example:

$$
x=0 ; \quad y=0 ;
$$

while(*) \{

$$
x=x+1 ; y=y+1
$$

\}
assert ($\mathrm{x}=\mathrm{y}$) ;

- Cannot prove this assertion using interval domain

Abstract Interpereation

Message from Patrick Cousot

Examples of Relational Domains

- Karr's domain: Tracks equalities between variables (e.g., $x=2 y+z$)
- Octagon domain: Constraints of the form $\pm x \pm y \leq c$
- Polyhedra domain: Constraints of the form $c_{1} x_{1}+\ldots c_{n} x_{n} \leq c$
- Polyhedra domain most precise among these, but can be expensive (exponential complexity)
- Octagons less precise but cubic time complexity

