Homework 1

AAA528, Fall 2018

Hakjoo Oh

Due: 10/01, in Class

Problem 1 (50 pts) A problem of covering m subjects with k teachers may be defined as follows. Let $T=\left\{T_{1}, \ldots, T_{n}\right\}$ be a set of teachers. Let $S=$ $\left\{S_{1}, \ldots, S_{m}\right\}$ be a set of subjects. Each teacher $t \in T$ can teach some subset $S(t)$ of the subjects S (i.e., $S(t) \subseteq S$). Given a natural number $k<n$, is there a subset of size k of the teachers that together covers all m subjects, i.e., a subset $C \subseteq T$ such that $|C|=k$ and $\left(\bigcup_{t \in C} S(t)\right)=S$? Explain how to encode an instance of this problem into a propositional formula F. F should be satisfiable iff there is such a subset C.

Problem 2 (50pts) A solution to a graph coloring problem is an assignment of colors to vertices such that no two adjacent vertices have the same color. Formally, a finite graph $G=\langle V, E\rangle$ consists of vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edges $E=\left\{\left(v_{i_{1}}, w_{i_{1}}\right), \ldots,\left(v_{i_{k}}, w_{i_{k}}\right)\right\}$. The finite set of colors is given by $C=\left\{c_{1}, \ldots, c_{m}\right\}$. A problem instance is given by a graph and a set of colors; the problem is to assign each vertex $v \in V$ a $\operatorname{color}(v) \in C$ such that for every edge $(v, w) \in E$, $\operatorname{color}(v) \neq \operatorname{color}(w)$. Clearly, not all instances have solutions. Explain how to encode an instance of a graph coloring problem into a propositional formula $F . F$ should be satisfiable iff a graph coloring exists.

