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SUMMARY

We present a simple algorithmic extension of the approximate call-strings approach to mitigate substantial
performance degradation caused by spurious interprocedural cycles. Spurious interprocedural cycles are,
in a realistic setting, the key reasons for why approximate call-return semantics in both context-sensitive
and -insensitive static analysis can make the analysis much slower than expected. In the approximate
call-strings-based context-sensitive static analysis, because the number of distinguished contexts is finite,
multiple call-contexts are inevitably joined at the entry of a procedure and the output at the exit is
propagated to multiple return-sites. We found that these multiple returns frequently create a single large
cycle (we call it ‘butterfly cycle’) covering almost all parts of the program and such a spurious cycle
makes analyses very slow and inaccurate. Our simple algorithmic technique (within the fixpoint iteration
algorithm) identifies and prunes these spurious interprocedural flows. The technique’s effectiveness is
proven by experiments with a realistic C analyzer to reduce the analysis time by 7–96%. As the technique
is algorithmic, it can be easily applicable to existing analyses without changing the underlying abstract
semantics, it is orthogonal to the underlying abstract semantics’ context-sensitivity, and its correctness is
obvious. Copyright q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the approximate call-strings approach, proposed by Sharir and Pnueli [1], it is inevitable to
follow some spurious (unrealizable or invalid) return paths. When the analysis uses a limited
context information in which the number of distinguished contexts is finite, multiple call-contexts
are inevitably joined at the entry of a procedure and the output at the exit are propagated to multiple
return-sites. For example, in the conventional way of avoiding invalid return paths by distinguishing
a finite k≥0 call-sites to each procedure [1], the analysis is doomed to still follow spurious paths
if the input program’s nested call-depth is larger than k. Increasing k to remove more spurious
paths quickly hits a limit in practice because of the increasing analysis cost in memory and time.

In this paper, which is an extended version of [2], we present the following:

• in a realistic setting, these multiple returns often create a single large flow cycle (we call it
‘butterfly cycle’) covering almost all parts of the program,

• such a big spurious cycle makes the approximate call-strings method [1] that distinguishes
the last k call-sites as very slow and inaccurate,
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Figure 1. Spurious dependence cycles because of abstract procedure calls and returns. The right-hand side
is a system of equations for k=0 and the left-hand side shows the dependencies between the equations.

Note a dependence cycle (2)→(3)→(4)→(5)→(2)→···.

• this performance problem can be relieved by a simple extension of the call-strings method,
• our extension is an algorithmic technique within the worklist-based fixpoint iteration routine,
without redesigning the underlying abstract semantics part,

• the algorithmic technique works regardless of the underlying abstract semantics’ context-
sensitivity (the k), and

• the technique also works regardless of the existing worklist ordering strategies of the fixpoint
algorithm. The technique consistently saves the analysis time, without sacrificing (or with
even improving) the analysis precision.

1.1. Problem: large performance degradation by inevitable, spurious interprocedural cycles

Static analysis’ spurious paths make spurious cycles across procedure boundaries in global analysis.
For example, consider the semantic equations in Figure 1 that (context-insensitively (k=0)) abstract
two consecutive calls to a procedure. The system of equations says to evaluate Equations (4)
and (6) for every return-site after analyzing the called procedure body (Equation (3)). Thus,
solving the equations follows a cycle: (2)→(3)→(4)→(5)→(2)→···. Spurious cycles can also
be created when k≥1. The following example describes how spurious cycles are created during
the analysis for k=1.

Example 1
The k length suffix method can be understood by applying the intraprocedural analysis algorithm
to the extended supergraph [3]. We first describe how an extended supergraph is created from
the program. Assume that a program is represented by a supergraph [4] G=(N ,E), which is a
directed graph in which control flow graphs for procedures are connected according to the calling
relationships between procedures. The extended supergraph GE =(NE ,EE ) is a directed graph
with NE ={(n,c) |n∈N andc∈ pcs(n)}, where pcs(n) represents the set of possible call-strings for
node n. ((n1,c1), (n2,c2))∈EE iff (n1,n2)∈E and c2 is the updated call string from c1. In other
words, GE is a directed graph whose nodes are defined by pairs of nodes and their possible contexts
and the edges explicitly show the propagation paths of abstract values in a context-sensitive manner.

Figure 2(a) shows an example of a supergraph where procedure f is called twice from procedure
m and g is called once from f. Figure 2(b) shows its extended supergraph for k=1. In Figure
2(b), since f is called two times, each node of f has two separate contexts. But, since g is called
only once, each node of g has only one context. Note that, although the procedure g returns to a
single return node (node 9), there are two paths which flow to the two different contexts, k and l:
these two contexts are due to the two different call sites (nodes 2 and 4). Thus the analysis follows
a spurious cycle m→c→d→h→ j →o→ p→k→m→···.

Such spurious cycles degrade the analysis performance both in precision and speed. Spurious
cycles exacerbate the analysis imprecision because they model spurious information flow. Spurious
cycles also degrade the analysis speed because solving cyclic equations repeatedly applies the
equations in vain until a fixpoint is reached.
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(a) (b)

Figure 2. Example of how spurious cycles are created during the analysis for k=1. Graph
(a) shows a supergraph and (b) shows its extended supergraph. In graph (b), each node of a
procedure is duplicated by the number of call sites which call the procedure. Analyzing the
program on the left-hand side of the figure using call-strings of length one is identical to applying
intraprocedural analysis to the program of (b). Note that the analysis still follows a spurious cycle

m→c→d→h→ j →o→ p→k→m→··· (in graph (b)).

The performance degradation becomes dramatic when the involved interprocedural spurious
cycles cover a large part of the input program. This is indeed the case in reality. In analyzing
real C programs, we observed that the analysis follows (Section 2) a single large cycle that spans
almost all parts of the input program. Such spurious cycles size can also be estimated by just
measuring the strongly connected components (scc) in the ‘lexical’‡ control flow graphs. Table I
shows the sizes of the largest scc in some open-source programs§ . In most programs, such cycles
cover most (80–90%) parts of the programs. Hence, globally analyzing a program is likely to
compute a fixpoint of a function that describes almost all parts of the input program. Even when
we do the call-strings-based context-sensitive analysis (k>0), large spurious cycles are likely to
remain (Section 2).

1.2. Solution: an algorithmic mitigation without redesigning the analysis (abstract semantics)

We present a simple algorithmic technique inside a worklist-based fixpoint iteration procedure
which, without redesigning the abstract semantics part, can effectively relieve the performance
degradation caused by spurious interprocedural cycles in both call-strings-based context-sensitive
(k>0) and -insensitive (k=0) analysis. For the moment, we consider the context-insensitive case
only. We extend it to context-sensitive analysis in Section 3.

While solving flow equations, the algorithmic technique simply forces procedures to return to
their corresponding called site, not to follow the last edge (edge (3)→(4) in Figure 1) of the

‡One node per lexical entity, ignoring function pointers.
§We measured the sizes of all possible cycles in the flow graphs. Note that interprocedural cycles happen because
of either spurious returns or recursive calls. Because recursive calls in the test C programs are immediate or span
only a small number of procedures, large interprocedural cycles are likely to be spurious ones.
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Table I. The sizes of the largest strongly connected components in the ‘lexical’ control flow graphs of
real C programs (In most cases, most procedures and nodes in program belong to a single cycle.).

Program Procedures in the largest cycle Basic-blocks in the largest cycle

spell-1.0 24/31 (77%) 751/782 (95%)
gzip-1.2.4a 100/135 (74%) 5988/6271 (95%)
sed-4.0.8 230/294 (78%) 14 559/14 976 (97%)
tar-1.13 205/222 (92%) 10 194/10 800 (94%)
wget-1.9 346/434 (80%) 15 249/16 544 (92%)
bison-1.875 410/832 (49%) 12 558/18 110 (69%)
proftpd-1.3.1 940/1096 (85%) 35 386/41 062 (86%)
apache-2.2.2 1364/2075 (66%) 71 719/95 179 (75%)

‘butterfly’ cycles. In order to enforce this, we control the equation-solving orders so that each
called procedure is analyzed exclusively for its one particular call-site. To be safe, we apply our
algorithm to only non-recursive procedures.

Consider the equation system in Figure 1 again and think of a middle of the analysis (equation-
solving) sequence, · · ·→(5)→(2)→(3), which indicates that the analysis of procedure f is
invoked from (5) and is now finished. After the evaluation of (3), a classical worklist algorithm
inserts all the equations, (4) and (6), that depend on (3). But, if we remember the fact that f has
been invoked from (5) and the other call-site (1) has not invoked the procedure until the analysis
of f finishes, we can know that continuing with (4) is useless, because the current analysis of f
is only related to (5), but not to other calls as (1). Thus, we process only (6), pruning the spurious
sequence (3)→(4)→···.

We demonstrate the effectiveness of our technique in a realistic setting. We implemented the
algorithm inside an industry-strength abstract-interpretation-based C static analyzer [5–7] and
tested its performance on open-source benchmarks. We have saved 7%–96% of the analysis time
for context-insensitive or -sensitive global analysis.

1.3. Contributions

• We present an extension of the approximate call-strings approach, which effectively reduces
the inefficiency caused by large, inevitable, spurious interprocedural cycles. We prove the
effectiveness of the technique by experiments with an industry-strength C static analyzer
[5–7] in globally analyzing medium-scale open-source programs.

• The technique is meaningful in three ways.

1. The technique aims to alleviate one major reason (spurious interprocedural cycles) for
substantial inefficiency in global static analysis.

2. It is purely an algorithmic technique inside the worklist-based fixpoint iteration routine.
Thus, it can be directly applicable without changing the analysis’ underlying abstract
semantics, regardless of whether the semantics is context-sensitive or not. The technique’s
correctness is obvious enough to avoid the burden of a safety proof that would be needed
if we designed newly the abstract semantics.

3. The technique not only reduces the analysis time but also improves the analysis precision.
This is because (i) our technique removes some (worklist-level) computations that occur
along invalid return paths (Section 3.3.1) and (ii) when the underlying analysis uses
widenings, the technique reduces the number of widening points (Section 3.3.2).

• We report one key reason (spurious interprocedural cycles) for why less accurate context-
sensitivity actually makes the analyses very slow. Though it is well-known folklore that less
precise analysis does not always have less cost [8–10], there are no realistic experiments
about their explicit reason.
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1.4. Related work

We compare, on the basis of their applicability to general semantic-based static analyzers¶ , our
method with other approaches that eliminate invalid paths.

The approximate call-strings approach [1] is popular in practice but its precision is not enough
to mitigate large spurious cycles. Sharir and Pnueli [1] presented an approximate call-strings
approach in which the last k call-sites are remembered for the calling contexts to each procedure.
The k length suffix method is an approximation of the full call-strings approach [1, 13, 14] and
has been used as a feasible alternative in practice [3, 8, 12]. Moreover, it is actually one of the
very few options available for semantic-based global static analysis that uses infinite domains and
non-distributive flow functions (e.g. [6, 12]). However, the k length suffix method induces a large
spurious cycle because it permits multiple returns of procedures. Our algorithm is an extension of
the k length suffix method and adds extra precision that relieves the performance problem from
spurious interprocedural cycles.

Another approximate call-strings method that uses full context-sensitivity for non-recursive
procedures has been shown to be practical for points to analysis [15, 16] but, the method is too
costly for more general semantic-based analyses. The method is approximate because it does not
distinguish the calling contexts for recursive calls. Whaley and Lam [16] used BDDs to efficiently
encode the calling contexts and showed that full context-sensitivity is feasible for non-recursive
procedures. Their analysis is fully context-sensitive for non-recursive procedures and does not suffer
from large spurious cycles caused by non-recursive procedures. Sridharan and Bodı́k [15] presented
an approximation, called regular-reachability, of the CFL (context-free language)-reachability [4].
They transform the analysis problem into the graph reachability problem [17] and only consider
execution paths where calls and returns are properly matched for programs without recursive
procedures. As the set of calling contexts that they consider is finite (because they do not consider
recursion), the set of calling contexts can be described by a regular language instead of CFLs.
Although these approaches are more precise than the k length suffix method, it is unknown whether
the BDD-based method [16] or the regular-reachability [15] is also applicable in practice to general
semantic-based analyzers rather than pointer analysis. Our algorithm can be useful for analyses for
which these approaches hit a cost limit in practice and the k length suffix method should be used
instead.

Full call-strings approaches [1, 13, 14] and functional approaches [1] do not suffer from spurious
cycles but are limited to restricted classes of data flow analysis problems. The original full call-
strings method [1] prescribes the domain to be finite and its improved algorithms [13, 14] are
also limited to bit-vector problems or finite domains. For infinite domains, these algorithms can
possibly generate infinite number of call-strings and hence may not terminate. Khedker and Karkare
algorithm [14] supports infinite domains only after unfolding cyclic call chains by a fixed number.
A functional approach [1] builds the summary flow functions for each procedure in a context-
independent way and these functions are used as flow functions of call statements. Because using the
summary functions do not require traversing the called procedure’s bodies, functional approaches
also do not suffer from the spurious cycles problem. However, computing summary flow functions
requires efficient representation of function compositions and meets and hence is applicable to
only a restricted data flow analysis problem.

Reps et al.’s algorithms [4, 18] to avoid unrealizable paths are limited to analysis problems
that can be expressed only in their graph reachability framework. These algorithms are variants of
the iterative functional approach [1] that require the flow functions to be distributive. Thus, their
algorithm cannot handle prevalent yet non-distributive analyses. For example, our analyzer that
uses the interval domain [19] with non-distributive flow functions does not fall into either their
IFDS [4] or IDE [18] problems. Meanwhile, our algorithm is independent of the underlying abstract

¶For example, such analyzers include octagon-based analyzers (e.g. [11]), interval-based analyzers (e.g. [5–7]), value
set analysis [12], and program analyzer generators (e.g, [3]), which usually use infinite (height) domains and
non-distributive flow functions.
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semantic functions. The regular-reachability [15], which is a restricted version of Reps et al.’s
algorithm [4], also requires the analysis problem to be expressed in the graph reachability problem.

Chambers et al.’s technique [20] is similar to ours but entails a relatively large change to an
existing worklist order. Their technique analyzes each procedure intraprocedurally, and at call-sites
continues the analysis of the callee. It returns to analyze the nodes of the caller only after finishing
the analysis of the callee. Our worklist prioritizes the callee only over the call nodes that invoke
the callee, not the entire caller, which is a relatively smaller change than Chambers et al.’s. In
addition, they assume worst case results for recursive calls, but we do not degrade the analysis
precision for recursive calls.

The idea of remembering the immediate calling context was first proposed by Myers [21] and we
extend it to the call-strings method. By remembering the immediate calling context only, Myers’
algorithm is context-sensitive for bit-vector frameworks [22]. Unfortunately, Myers’ formulation
is applicable only to bit-vector problems and is hard to be extended to general call-strings-based
analysis. This paper can be understood as an extension of Myers’ algorithm for general call-strings-
based static analysis.

1.5. Organization

Section 2 discusses the performance problem of the traditional call-strings-based context-sensitive
or -insensitive interprocedural analysis. Section 3 presents our solution to mitigate the problem. We
first describe the approximate call-strings approach and then present our extension of the original
method. Section 4 presents the experimental results that compare the performance of our algorithm
with the traditional algorithm. Section 5 concludes the paper.

2. PERFORMANCE PROBLEMS BY LARGE SPURIOUS CYCLES

In this section, we show that large spurious cycles are frequently created during (both context-
insensitive and -sensitive) global static analysis, and that they drastically degrade the analysis
performance. The approximate call-strings-based context-sensitive abstract semantics cannot effec-
tively eliminate such large spurious cycles.

2.1. Interprocedural spurious cycles reach far in real C programs

If a spurious cycle is created by multiple calls to a procedure f , then all the procedures that are
reachable from f or that reach f via the call-graph belong to the cycle because of call and return
flows. For example, consider a call-chain · · · f1→ f2 · · ·. If f1 calls f2 multiple times, creating
a spurious butterfly cycle f1�� f2 between them, then fixpoint-solving the cycle involves all the
nodes of procedures that reach f1 or that are reachable from f2. This situation is common in C
programs. For example, in GNU software, the xmalloc procedure, which is in charge of memory
allocation, is called from many other procedures, and hence generates a butterfly cycle. Then every
procedure that reaches xmalloc via the call-graph is trapped into a fixpoint cycle.

In conventional context-sensitive analysis that distinguishes the last k call-sites [1], if there are
call-chains of length l(>k) in programs, it is still possible to have a spurious cycle created during
the first l−k calls. This spurious cycle traps the last k procedures into a fixpoint cycle by the
above reason.

One spurious cycle in a real C program can trap as many as 80–90% of basic blocks of the
program into a fixpoint cycle. Figure 3 shows this phenomenon. In the figures, the x-axis represents
the execution time of the analysis and the y-axis represents the procedure name, which is mapped to
unique integers. During the analysis, we draw the graph by plotting the point (t, f ) if the analysis’
worklist algorithm visits a node of procedure f at time t . For brevity, the graph for sed-4.0.8 is
shown only up to 100 000 iterations among more than 3 000 000 total iterations. From the results,
we first observe that similar patterns are repeated and each pattern contains almost all procedures
in the program. We also find that there are much more repetitions in the case of a large program
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Figure 3. Analysis localities. Because of butterfly cycles, during the analysis, similar patterns are repeated
several times and each pattern contains almost all parts of the programs.

(sed-4.0.8, 26 807 LOC) than a small one (spell-1.0, 2213 LOC): more than 150 repeated iterations
were required to analyze sed-4.0.8, whereas spell-1.0 needed about 30 repetitions.

3. OUR ALGORITHMIC MITIGATION TECHNIQUE

In this section, we present our extension of the approximate call-strings-based approach, aiming
to mitigate performance problems caused by the large spurious cycles. Our technique is purely
algorithmic: the technique does not depend on the underlying abstract semantics but is a simple
addition to the existing worklist-based fixpoint algorithm.

We first describe the traditional call-strings-based analysis algorithm (Section 3.2) as well as
the representation of programs (Section 3.1). Then we present our algorithmic extension of the
classical algorithm (Section 3.3).

3.1. Graph representation of programs

We assume that a program is represented by a supergraph [4]. A supergraph consists of control
flow graphs of procedures with interprocedural edges connecting each call-site to its callee. Each
node n∈Node in the graph has one of the five types:

entry f | exit f | callg,rf | r tncf | cmd f

The subscript f of each node represents the procedure name enclosing the node. entry f and exit f
are the entry and exit nodes of procedure f . A call-site in a program is represented by a call
node and its corresponding return node. A call node callg,rf indicates that it invokes a procedure g
and its corresponding return node is r . We assume that function pointers are resolved (before the
analysis)‖. Node r tncf represents a return node in f whose corresponding call node is c. Node
cmd f represents a general command statement. Edges are assembled by a function, succof, which
maps each node to its successors. CallNode is the set of call nodes in a program.

3.2. Normalk : a normal call-strings-based analysis algorithm

Call-strings are sequences of call nodes. To make them finite, we only consider call-strings of

length at most k for some fixed integer k≥0. We write CallNode≤k let=� for the set of call-strings

‖We use an efficient, flow-insensitive pointer analysis for resolving function pointers.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:585–603
DOI: 10.1002/spe



592 H. OH AND K. YI

(a) (b)

Figure 4. A normal context-sensitive worklist algorithm Normalk and its RSS modification
Normalk/RSS. The left-hand side shows a worklist algorithm for call-strings based context-sensitive
analysis. The right-hand side shows the RSS algorithm for the same analysis. These two algorithms
are the same except for shaded regions. For brevity, we omit the usual definition of F̂ , which updates
the worklist in addition to computing the flow equation’s body: (a) a normal worklist algorithm

Normalk and (b) our algorithm Normalk/RSS.

of length ≤k. We write [c1,c2, . . . ,ci ] for a call-string of call sequence c1,c2, . . . ,ci . Given a
call-string � and a call node c, [�,c] denotes a call-string obtained by appending c to �. the case
of context-insensitive analysis (k=0), we use �={�}, where the empty call-string � means no
context-information.

Figure 4(a) shows the worklist-based fixpoint iteration algorithm that performs call-strings(�)-
based context-sensitive (or insensitive, when k=0) analysis. The algorithm computes a table
T ∈Node→State which associates each node with its input state State=�→Mem, where Mem
denotes abstract memory, which is a map from program variables to abstract values. That is, call-
strings are tagged to the abstract memories and are used to distinguish the memories propagated
along different interprocedural paths, to a limited extent (the last k call-sites). The worklist W
consists of node and call-string pairs. The algorithm chooses a work-item (n,�)∈Node×� from
the worklist and evaluates the node n with the flow function F̂ . Next work-items to be inserted
into the worklist are defined by function N ∈Node×�→2Node×�:

N (n,�)=

⎧⎪⎪⎨
⎪⎪⎩

{(r,�′) |�=��′,callg,rf �k∧�′ ∈dom(T (callg,rf ))} if n=exitg

{(entryg,��,n�k))} if n=callg,rf

{(n′,�) |n′ ∈succof(n)} otherwise

where dom( f ) denotes the domain of map f and ��,c�k denotes the call-string [�,c] but possibly
truncated so as to keep at most the last k call-sites.
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The algorithm can follow spurious return paths if the input program’s nested call-depth is larger
than k. The mapping �′ to ��′,callg,rf �k is not one-to-one and N possibly returns many work-items
at an exit node. The following example illustrates this situation.

Example 2
Let k=2 and suppose call-strings [c1,c3] and [c2,c3] are tagged to a call node callg,rf . Suppose

callg,rf calls g under the call-string [c1,c3]. By the definition of N , the call-string at entryg is

�c1,c3,callg,rf �2=[c3,callg,rf ]. After the analysis of g, the call-string at exitg is also [c3,callg,rf ].
When g returns, since the call-string at exitg equals to both �c1,c3,callg,rf �2 and �c2,c3,callg,rf �2,
N returns two work-items (r, [c1,c3]) and (r, [c2,c3]). The return to (r, [c2,c3]) is spurious because
g was called under the context [c1,c3].

We call the above analysis algorithm Normalk (k=0,1,2, . . .). Normal0 performs context-
insensitive analysis, Normal1 performs context-sensitive analysis that distinguishes the last 1
call-site, and so on.

3.3. Normalk/RSS: our algorithm
Before discussing our technique, we define the call-context that will be used throughout this
section.

Definition 3
When a procedure g is called from a call node callg,rf under context �, we say that (callg,rf ,�)

is the call-context for that procedure call. As each call node callg,rf has a unique return node, we

interchangeably write (r,�) and (callg,rf ,�) for the same call-context.

Our return-site-sensitive (RSS) technique is simple. When calling a procedure at a call-site,
the call-context for that call is remembered until the procedure returns. The bookkeeping cost is
limited to only one memory entry per procedure. This is possible by the following strategies:

1. Single return: Whenever the analysis of a procedure g is started from a call node callg,rf
in f under call-string �, the algorithm remembers its call-context (r,�), consisting of the
corresponding return node r and the call-string �. And upon finishing analyzing g’s body,
after evaluating exitg , the algorithm inserts only the remembered return node and its call-
string (r,�) into the worklist. Multiple returns are avoided. For correctness, this single return
should be allowed only when the other call nodes that call g are not analyzed until the
analysis of g from (callg,rf ,�) completes.

Example 3. Consider the situation of Example 2 again. When g is called from callg,rf under the
context [c1,c3], our algorithm remembers g’s call-context (r, [c1,c3]). And at exitg , under its
context [c3,callg,rf ], our algorithm inserts only the remembered (r, [c1,c3]) into the worklist.
The spurious return to (r, [c2,c3]) is avoided.

2. One call per procedure, exclusively: We implement the single return policy by using one
memory entry per procedure to remember the call-context. This is possible if we can analyze
each called procedure exclusively for its one particular call-context. If a procedure is being
analyzed from a call node cwith a call-string �, processings of other call-sites that call the same
procedure should wait until the analysis of the procedure from (c,�) is completely finished.
This one-exclusive-call-per-procedure policy is enforced by not selecting from the worklist call
nodes that (directly or transitively) call the procedures that are currently being analyzed.
Example 3. Suppose procedure g was called from callg,rf under the context [c1,c3] and our
algorithm has remembered the call-context (r, [c1,c3]). Suppose also the current worklist
W={(callg,rf , [c2,c3]), . . .} which contains a call-site that invokes g. In this situation, our

algorithm does not select (callg,rf , [c2,c3]) as the next work-item unless the analysis of g is
completely finished.
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3. Recursion handling: The algorithm gives up the single return policy for recursive procedures.
This is because we cannot finish analyzing a recursive procedure’s body without considering
another call (recursive call) in it. Recursive procedures are handled in the same way as the
normal worklist algorithm.

The algorithm does not follow spurious return paths regardless of the program’s nested call-depth.
While Normalk starts losing its power when a call chain’s length is larger than k, Normalk/RSS
does not. The following example shows this difference between Normalk and Normalk/RSS.

Example 5. Consider a program that has the following call-chain (where f1
c1,c2→ f2 denotes that

f1 calls f2 at call-sites c1 and c2) and suppose k=1:

f1
c1,c2→ f2

c3,c4→ f3

• Normal1: The analysis results for f2 are distinguished by [c1] and [c2], hence no butterfly
cycle happens between f1 and f2. Now, when f3 is called from f2 at c3, we have two call-
contexts (c3, [c1]) and (c3, [c2]) but analyzing f3 proceeds with context [c3] (because k=1).
That is, Normalk forgets the call-context for procedure f3. Thus the result of analyzing f3
must flow back to all call-contexts with return site c3, i.e. to both the call-contexts (c3, [c1])
and (c3, [c2]).

• Normal1/RSS: The results for f2 and f3 are distinguished in the same way as Normal1. But,
Normal1/RSS additionally remembers the call-contexts for every procedure call. If f3 was
called from c3 under context [c1], our algorithmic technique forces Normalk to remember the
call-context (c3, [c1]) for that procedure call. And finishing analyzing f3’s body, f3 returns
only to the remembered call-context (c3, [c1]). This is possible by the one-exclusive-call-per-
procedure policy.

We ensure the one-exclusive-call-per-procedure policy by prioritizing a callee over call-sites
that (directly or transitively) invoke the callee. The algorithm always analyzes the nodes of the
callee g first prior to any other call nodes that invoke g: before selecting a work-item as the next
job, we exclude from the worklist every call node callg,rf to g if the worklist contains any node
of procedure h that can be reached from g along some call-chain g→···→h, including the case
of g=h. After excluding such call nodes, the algorithm chooses a work-item in the same way as
a normal worklist algorithm, i.e. after the exclusion, our algorithm relies on the existing worklist
ordering strategy in selecting the next work-item.

Example 6
Consider a worklist {(callg,r1f ,�1), (call

h,r2
j ,�2), (nh,�3), (call

i,r4
h ,�4)} and assume that there is a

path f →g→h in the call graph. When choosing a work-item from the worklist, our algorithm
first excludes all the call nodes that invoke procedures now being analyzed: callh,r2

j is excluded

because h’s node nh is in the worklist. Similarly, callg,r1f is excluded because there is a call-
chain g→h in the call graph and h’s node nh exists. Thus, the algorithm chooses a work-item
from {(nh,�3), (calli,r4h ,�4)}. The excluded work-items (callg,r1f ,�1) and (callh,r2

j ,�2) will not be
selected unless there are no nodes of h in the worklist.

Figure 4(b) shows our algorithmic technique that is applied to the normal worklist algorithm
of Figure 4(a). To transform Normalk into Normalk/RSS, only shaded lines are inserted; the
other parts remain the same. ReturnSite is a map to record a single return site information (return
node and context pair) per procedure. Lines 15 and 16 are for remembering a single return when
encountering a call-site. The algorithm checks if the current node is a call-node and its target
procedure is non-recursive (the recursive predicate decides whether the procedure is recursive or
not), and if so, it remembers its single return-site information for the callee. Lines 17–21 handle
procedure returns. If the current node is an exit of a non-recursive procedure, only the remembered
return for that procedure is used as a next work-item, instead of all possible next (successor,
context) pairs (line 23). Prioritizing callee over call nodes is implemented by delaying call nodes
to procedures now being analyzed. To do this, in lines 12 and 13, the algorithm excludes the
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call nodes {(callg, , )∈W |(nh, )∈W∧reach(g,h)∧¬recursive(g)} that invoke non-recursive
procedures whose nodes are already contained in the current worklist. reach(g,h) is true if there
is a path in the call graph from g to h.

Example 7
Analyzing the program on the left-hand side of the figure below proceeds as shown in the right-
hand side table. (Assume that k=0, the choose function in Figure 4 arbitrarily chooses an element
from the given worklist, and the initial worklist is {1,4}).

For each iteration of the algorithm, the table shows the contents of the current worklist (W), call
nodes that are excluded at this iteration (S), return site information (ReturnSite), and the updated
worklist (W). n̄ represents the chosen node for each iteration. When the algorithm processes call
node 1 at the first iteration, f remembers its corresponding return-site 4. At the third and fourth
iterations, node 5 was excluded, because it is another call to f and the worklist contains the nodes
of f at both iterations. At the exit of f (when processing node 3 at the fourth iteration), only
ReturnSite( f )=4 is inserted into the worklist instead of succof( f ) = {4,6}.

3.3.1. Correctness and precision. One noticeable thing about Normalk/RSS is that the result is
not a fixpoint of the given flow equation system, but still a sound approximation of the program
semantics. As the algorithm prunes some computation steps during worklist algorithm (at exit
nodes of non-recursive procedures), the result of the algorithm may not be a fixpoint of the original
equation system. However, because the algorithm prunes only spurious returns that definitely do
not happen in the real executions of the program, our algorithm does not miss any information
flow of real executions. In other words, our algorithm does not necessarily produce a maximal
fixpoint solution but something below it and still above the real semantics.

For any f and any arbitrary call-context (call f,rg ,�), the single return to (r,�) after analyzing

f is correct if the state from (call f,rg ,�) is implied by the input state used in the analysis of f
and its result is guaranteed to be returned to (r,�). The state from every call-context flows into
f (abstract semantics). Our single-return policy does not miss returning f ’s analysis result to
its corresponding call-context∗∗ because (1) we remember the context at each call and (2) for
every different call, modulo the underlying context-sensitivity, we exclusively analyze f . Because
we cannot enforce this exclusivity for recursive calls, we do not apply the algorithm to recursive
procedures.

Normalk/RSS is always at least as precise as Normalk . Because Normalk/RSS prunes some
(worklist-level) computations that occur along invalid return paths, it is likely to have an effect
of avoiding propagations of information along invalid return paths. Hence, Normalk/RSS gives
more precise (or at least the same) results than Normalk . The actual precision of Normalk/RSS
varies depending on the existing worklist order of Normalk .

Example 8
Consider the program in Example 7 again, and suppose the current worklist is {1,5}. When
analyzing the program with Normal0, the fixpoint-solving follows both spurious return paths,

∗∗Here, we ignore the cases where the callee never returns (e.g. it calls exit()). However, although that happens, we
can enforce the return of callee by always inserting the exit node of a procedure when inserting the entry node of
the procedure into the worklist.
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regardless of the worklist order,

1→ 2→3→6 (1)

5→ 2→3→4 (2)

because of multiple returns from node 3. When analyzing with Normal0/RSS, there are two
possibilities, depending on the worklist order:

1. When Normal0/RSS selects node 1 first: Then the fixpoint iteration sequence may be
1;2;3;4;5;2;3;6. This sequence involves the spurious path (1) (because the second visit to
node 2 uses the information from node 1 as well as from node 5), but not (2). Normal0/RSS
is more precise than Normal0.

2. When Normal0/RSS selects node 5 first: Then the fixpoint iteration sequence may be
5;2;3;6;1;2;3;4;5;2;3;6. This computation involves both spurious paths (1) and (2). With
this iteration order, Normal0 and Normal0/RSS have the same precision.

3.3.2. Less widening points. Widening [19] is a speedup technique designed to safely approximate
least fixpoints of semantic function. In abstract-interpretation-based static analysis, program invari-
ants are characterized as least fixpoints of (abstract) semantic functions over abstract domains. For
finite height domains, the fixpoints are computed by using a classical iterative algorithm. But the
iterative algorithm does not terminate or has unacceptable costs for domains with infinite height or
very large height. For infinite or very large height domains such as lattice of intervals, the widening
technique [19] is used to guarantee or accelerate the analysis’ termination. With widening, the iter-
ative algorithm does not necessarily compute least fixpoints but finds a safe (upper) approximation
of the least fixpoint.

Our technique reduces cycles, hence obviously reduces the number of widening points. Because
applying widening means losing analysis precision, the widening operation should be carefully
applied to as small as possible a subset of the entire program points. A common way of selecting
such widening points is to apply widening to every heads of loops in program [23], including ones
that are interprocedurally created by calling a procedure multiple times. Normalk/RSS can reduce
the number of widening points more. Normalk/RSS need not apply widenings at interprocedural
loop-heads that are created by non-recursive procedure calls. This is because Normalk/RSS does
not follow such interprocedural cycles.

Example 9
Consider the following code and interval-domain-based analysis of the code.

As procedure f is called twice from procedure main, a spurious interprocedural cycle (5)→
(2)→(3)→(4)→(5) · · · will be created during the analysis. Iterating through the cycle continually
increases the value of the global variable g: [0,0]→[0,1]→[0,2]→·· ·. In order to terminate the
analysis, a widening should be applied at the entry of procedure f. Hence, Normalk computes g =
[0,+∞] at the end of procedure main. However, Normalk/RSS does not apply the widening at
the entry of procedure f (since f is non-recursive and Normalk/RSS does not follow the spurious
return paths (5)→(2)→(3)→(4)), computing g = [0,2] at the end of procedure main.
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3.4. A fast implementation of Normalk/RSS

In practice, if the worklist algorithm uses a particular worklist ordering strategy, the RSS algorithm
can be implemented more easily.

Assume that the worklist algorithm uses a partial order RevTop between nodes in the supergraph
and retrieves the node with the highest order from the worklist. The order RevTop between nodes
is defined as a reverse topological order between procedures on the call graph: a node n of a
procedure f precedes a node m of a procedure g if f precedes g in the reverse topological order
in the call graph. If f and g are the same procedures, the order between the nodes is defined
by the weak topological order [23] on the control flow graph of that procedure. Note that there
can be two or more nodes that have the highest order, for example of each branch of conditional
statements. In this case, the algorithm arbitrarily chooses a node among them.

Without recursive procedures, the order RevTop guarantees the one-exclusive-call-per-procedure
policy. This is because the order means that a callee is always analyzed first rather than its caller.
For instance, think of two procedures f and g, where f precedes g in reverse topological order
on the call graph. It means that f is called by some call sites in g. Then the worklist algorithm
selects a node of f first from the worklist rather than nodes of g unless the worklist does not
contain any node of f , which means that all the other calls to f inside g wait until the analysis
of f is completely finished. Recursive procedures are handled in the same way as the normal
worklist algorithm.

To implement the technique inside the algorithm Figure 4(b), line 12 is removed and line 13 is
replaced by the following:

(n,�) :=chooseRevTop(W),

where chooseRevTop chooses the work-item that has the highest RevTop order from the work-
list (W).

4. EXPERIMENTS

We implemented our algorithm inside a realistic C analyzer [5–7]. Experiments with open-source
programs show that Normalk/RSS for any k is very likely faster than Normalk , and that even
Normalk+1/RSS can be faster than Normalk .

4.1. Setting up

Normalk is our underlying worklist algorithm, on top of which our industry-strength static analyzer
[5–7] for C is installed. The analyzer is an interval-domain-based abstract interpreter. The analyzer
performs by default flow-sensitive and call-strings-based context-sensitive global analysis on the
supergraph of the input program: it computes T =Node→State where State=�→Mem. Mem
denotes abstract memory Mem=Addr→Val where Addr denotes abstract locations that are either
program variables or allocation sites, and Val denotes abstract values including Ẑ (interval domain),

2Addr (points-to set), and 2AllocSite×Ẑ×Ẑ (array block, consisting of base address, offset, and
size [6]).

We evaluated our algorithm in two ways. First, we measured the net effects of avoiding spurious
interprocedural cycles. As our algorithmic technique changes the existing worklist order, perfor-
mance differences between Normalk and Normalk/RSS could be attributed not only to avoiding
spurious cycles but also to the changed worklist order. In order to measure the net effects of
avoiding spurious cycles, we applied the same worklist order RevTop, defined in Section 3.4, to
both Normalk and Normalk/RSS. Note that this ordering itself contains the ‘prioritize callees
over call-sites’ feature and we do not explicitly need the delaying call technique (lines 12 and 13
in Figure 4(b)) in Normalk/RSS. Hence the worklist order for Normalk and Normalk/RSS are
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Table II. Benchmark programs and their raw analysis results when using RevTop order.

#iterations time
k-call-

Program LOC #nodes strings Normal Normal/RSS Normal Normal/RSS

spell-1.0 2213 782 0 33864 5800 60.98 8.49
1 31933 10109 55.02 13.35
2 57083 15226 102.28 19.04

barcode-0.96 4460 2634 0 22040 19556 93.22 84.44
1 33808 30311 144.37 134.57
2 40176 36058 183.49 169.08

httptunnel-3.3 6174 2757 0 442159 48292 2020.10 191.53
1 267291 116666 1525.26 502.59
2 609623 251575 5983.27 1234.75

gzip-1.2.4a 7327 6271 0 653063 88359 4601.23 621.52
1 991135 165892 10281.94 1217.58
2 1174632 150391 18263.58 1116.25

jwhois-3.0.1 9344 5147 0 417529 134389 4284.21 1273.49
1 272377 138077 2445.56 1222.07
2 594090 180080 8448.36 1631.07

parser 10900 9298 0 3452248 230309 61316.91 3270.40
1 ∞ ∞ ∞ ∞

bc-1.06 13093 4924 0 1964396 412549 23515.27 3644.13
1 3038986 1477120 44859.16 12557.88
2 ∞ ∞ ∞ ∞

less-290 18449 7754 0 3149284 1420432 46274.67 20196.69
1 ∞ ∞ ∞ ∞

twolf 19700 14610 0 3028814 139082 33293.96 1395.32
1 ∞ ∞ ∞ ∞

tar-1.13 20258 10800 0 4748749 700474 75013.88 9973.40
1 ∞ ∞ ∞ ∞

make-3.76.1 27304 11061 0 4613382 2511582 88221.06 44853.49
1 ∞ ∞ ∞ ∞

Lines of code (LOC) are given before preprocessing. The number of nodes in the supergraph (#nodes) is given
after preprocessing. k denotes the size of call-strings used for the analysis. Entries with ∞ means missing data
because of our analysis running out of memory.

the same††. For this evaluation, we compare analysis time and precision between Normalk and
Normalk/RSS.

We also evaluated our algorithm when our technique interferes with the existing worklist order.
Because our technique interferes with (i.e. changes) the existing worklist order of Normalk , it
is necessary to check whether our technique works well regardless of the existing worklist order
strategies. To see what happens in this case, we applied our technique to Normalk , which uses
the following worklist order, called Arbitrary; the order between nodes in different procedures is
determined by a random order that is fixed before the analysis and the order between nodes in
the same procedure is defined by the weak topological order. Note that the worklist order does
not contain the ‘prioritize callees over call-sites’ because the order randomly chooses a procedure
regardless of the call relationship.

We have analyzed 11 open-source and SPEC2000 software packages. Table II shows our bench-
mark programs. All experiments were done on a Linux 2.6 system running on a Pentium4 3.2GHz
box with 4GB of main memory. parser and twolf are from SPEC2000 benchmarks and the
others are open-source software.

We use two performance measures: (1) #iterations is the total number of iterations during the
worklist algorithm. The number directly indicates the amount of computation; (2) time is the CPU

††In fact, the order described here is the one that our analyzer uses by default, which consistently shows better
performance than the naive worklist management scheme (BFS/DFS) or simple ‘wait-at-join’ techniques (e.g. [6]).
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Figure 5. Net effects of avoiding spurious cycles: (a) comparison of #iterations
between Normalk and Normalk/RSS, for k=0,1,2 and (b) comparison of

#iterations between Normalk and Normalk+1/RSS, for k=0,1.

time spent during the analysis. Although time is roughly proportional to #iterations, it is subject
to change because of different implementations and test environments.

4.2. The net effects of avoiding spurious cycles

4.2.1. Reduced analysis time. Figure 5(a) compares #iterations between Normalk/RSS and
Normalk for k=0,1,2 using RevTop worklist order, which shows the net effects of avoiding
spurious cycles. In this comparison, Normalk/RSS reduces the number of iterations of Normalk
by on average 72%.

When k=0 (context-insensitive), Normal0/RSS has reduced #iterations by, on average, about
72% against Normal0. For most programs, the analysis time has been reduced by more than 50%.
There is one exception: barcode. The amount of computation has been reduced by 11%. This is

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:585–603
DOI: 10.1002/spe



600 H. OH AND K. YI

Table III. Comparison of precision between Normal0 and Normal0/RSS.

Program Analysis #const #finite #open #top

spell-1.0 Normal0 345 88 33 143
Normal0/RSS 345 89 35 140

barcode-0.96 Normal0 2136 588 240 527
Normal0/RSS 2136 589 240 526

httptunnel-3.3 Normal0 1337 342 120 481
Normal0/RSS 1345 342 120 473

gzip-1.2.4a Normal0 1995 714 255 1214
Normal0/RSS 1995 716 255 1212

jwhois-3.0.1 Normal0 2740 415 961 1036
Normal0/RSS 2740 415 961 1036

because barcode has unusual call structures: it does not call a procedure many times, but calls
many different procedures one by one. Thus, the program contains few butterfly cycles.

When k=1, Normal1/RSS has reduced #iterations by, on average, about 53% against Normal1.
Compared to the context-insensitive case (k=0), for all programs, cost reduction ratios have
been slightly decreased. As an example, for spell, the reduction ratio when k=0 is 83% and
the ratio when k=1 is 68%. This is mainly because, in our analysis, Normal0 costs more than
Normal1 for most programs (spell,httptunnel,jwhois). For httptunnel, in Table II,
the analysis time (2020.10 s) for k=1 is less than the time (1525.26 s) for k=0. This means that
performance problems by butterfly cycles is much more severe when k=0 than that of k=1,
because by increasing context-sensitivity some spurious paths can be removed. However, by using
our algorithm, we can still reduce the cost of Normal1 by 53%.

When k=2, Normal2/RSS has reduced #iterations by, on average, 60% against Normal2.
Compared to the case of k=1, the cost reduction ratio has been slightly increased for most
programs. For example, the ratio for spell has changed from 68 to 73%. In the analysis of
Normal2, since the equation system is much larger than that of Normal1, our conjecture is that
the size of butterfly cycles is likely to get larger. As larger butterfly cycles cause more serious
problems (Section 2), our RSS algorithm is likely to greater reduce useless computation.

Figure 5(b) compares the performance of Normalk+1/RSS against Normalk for k=0,1. The
result shows that, for all programs except barcode, even Normalk+1/RSS is faster than Normalk .
As Normalk+1/RSS can be even faster than Normalk , if memory cost permits, we can consider
using Normalk+1/RSS instead of Normalk .

4.2.2. Increased analysis precision. Table III compares the precision between Normal0 and
Normal0/RSS‡‡. In order to measure the increased precision, we first joined all the memories
associated with each program point (Node). Then we counted the number of constant intervals
(#const, e.g. [1,1]), finite intervals (#finite, e.g. [1,5]), intervals with one infinity (#open, e.g.
[−1,+∞) or (−∞,1]), and intervals with two infinities (#top, (−∞,+∞)) from interval values

(Ẑ) and array blocks (2AllocSite×Ẑ×Ẑ) contained in the joined memory. The constant interval and
the top interval indicate the most precise and imprecise values, respectively. The results show that
Normal0/RSS is more precise (spell, barcode, httptunnel, gzip) than Normal0 or the
precision is the same (jwhois).

4.3. Speedup when interfering with the existing worklist order

Figure 6(a) compares #iterations between Normalk and Normalk/RSS for k=0 using Arbitrary
worklist order. In the comparison, Normalk/RSS reduces the computation cost of Normalk by

‡‡We compared the precision for the case of k=0 and for the first five programs in TableII because we need more
memory to do the precision comparison (we should keep two analysis results of Normal0 and Normal0/RSS at
the same time).
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Figure 6. The analysis results when using Arbitrary worklist order: (a) comparison
of #iterations between Normal0 and Normal0/RSS, for k=0 and (b) benchmark

programs and their raw analysis results.

on average 53%. From these results, we can find that the interference does not significantly affect
the overall performance differences: the reduction ratio has been decreased by 19% from the case
of net effects of avoiding spurious cycles (72%). Hence, the technique is likely to relieve the
problems of spurious cycles regardless of the existing worklist ordering strategies.

5. CONCLUSION

We have presented a simple algorithmic extension of the approximate call-strings approach to
alleviate substantial inefficiency caused by large spurious interprocedural cycles. Such cycles are
identified as a major reason for the folklore problem in static analysis that less precise analyses
sometimes are slower.

Although this inefficiency might not come to the fore when analyzing small programs, globally
analyzing medium or large programs makes it outstanding. The proposed algorithmic technique
reduces the analysis time by 7–96% for open-source benchmarks.

Our technique is orthogonally applicable to context-sensitive analysis. It is a simple technique
inside the worklist-based fixpoint iteration routine. It is directly applicable without changing the
analysis’ underlying abstract semantics, regardless of whether the semantics is context-sensitive
or not.

We have also shown, by experiments, that our technique works regardless of the existing worklist
ordering strategies. Thus, it is applicable without changing the underlying ordering schemes of the
fixpoint algorithm.

Our technique suggests the following implementation guideline in tuning a global semantic
analysis. Suppose we develop an analyzer that uses call-strings of size k for context-sensitivity

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:585–603
DOI: 10.1002/spe



602 H. OH AND K. YI

with the Normalk algorithm. Suppose further that we cannot increase the call-strings size more
than k because of either the time or memory cost. In this situation, our algorithmic technique has
the following usages.

• When we cannot increase the call-strings’ size more than k because of the memory cost: then
use Normalk/RSS instead of Normalk . This is because (1) Normalk/RSS is empirically
faster than Normalk (Section 4.1 and Figures 5(a) and 6); (2) Normalk/RSS is in principle
more accurate or at least does not sacrifice the precision of Normalk (Sections 3.3.1, 3.3.2 and
TableIII); (3) Normalk/RSS requires in extra just as many memory entities as the number
of procedures.

• When we cannot increase the call-strings size more than k because of the time cost:
then, if memory permits, consider using Normalk+1/RSS instead. This is because (1)
Normalk+1/RSS can be even faster than Normalk (Section 4.1 and Figure 5(b)) and (2) it
requires in extra just as many entities as the number of procedures.

Although tuning the accuracy of static analysis can in principle be controlled solely by
redesigning the underlying abstract semantics, our algorithmic technique is a simple and orthog-
onal leverage to effectively shift the analysis cost/accuracy balance for the better. The technique’s
correctness is obvious enough to avoid the burden of safety proof of otherwise newly designed
abstract semantics.
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