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ABSTRACT

We present Chameleon, a new approach for adaptively chang-

ing search heuristics during concolic testing. Search heuristics

play a central role in concolic testing as they mitigate the path-

explosion problem by focusing on particular program paths that

are likely to increase code coverage as quickly as possible. A variety

of techniques for search heuristics have been proposed over the

past decade. However, existing approaches are limited in that they

use the same search heuristics throughout the entire testing pro-

cess, which is inherently insufficient to exercise various execution

paths. Chameleon overcomes this limitation by adapting search

heuristics on the fly via an algorithm that learns new search heuris-

tics based on the knowledge accumulated during concolic testing.

Experimental results show that the transition from the traditional

non-adaptive approaches to ours greatly improves the practicality

of concolic testing in terms of both code coverage and bug-finding.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.
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1 INTRODUCTION

Concolic testing [11, 27] is a promising software testing technique

popular in both academia and industry [1, 5, 6, 19, 20, 30, 32, 33].

The technique aims to increase code coverage as quickly as possible,

ultimately enabling effective bug-finding in a limited time budget.

To do so, unlike random testing or fuzzing, concolic testing sys-

tematically generates test-cases by repeating the following process:

(1) it concolically executes the subject program to collect the path
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condition, i.e., the sequence of symbolic branch conditions exer-

cised by the current program execution, (2) it produces a new path

condition by selecting and negating a branch of the current path

condition, and (3) it solves the resulting path condition to generate

a new test-case that guides the next program execution towards the

opposite of the selected branch. Because of this systematic nature,

concolic testing is increasingly used in diverse domains, including

operating systems [19], embedded systems [10, 14], and even neural

networks [30], among others.

Concolic testing includes search heuristics as a critical ingredient.

To be practical for real-world applications, concolic testing must

be able to adequately address the path-explosion problem; because

real-world programs exhibit infinitely many different paths, it is

impossible to exercise all of them by testing. To address this chal-

lenge, concolic testing uses a search heuristic, a branch selection

strategy that takes a path condition and selects a branch based on

its own criterion (it is used in the second step of the concolic testing

process described in the preceding paragraph). Search heuristics

allow concolic testing to preferentially explore particular classes

of execution paths that they think are most effective to maximize

code coverage within a given time limit. It has been well-known

that how to choose and use search heuristics is critically important,

and diverse approaches have been proposed to improve concolic

testing in practice over the past decade [3–5, 19, 22, 26, 28].

In this paper, we propose a new approach, called Chameleon,

for effectively employing search heuristics during concolic test-

ing. The key novelty of Chameleon is adaptively changing search

heuristics on the fly, so that the branch-selection criterion changes

as necessary throughout concolic testing in a way that maximizes

the final performance. By contrast, all of the existing approaches

for employing search heuristics [3–5, 19, 22, 26, 28] are not adaptive

as they use the same search heuristics over the whole process of

concolic testing. In this paper, we demonstrate that this is a key lim-

iting factor of the existing approaches, and we can make concolic

testing much more practical for real-world applications by being

adaptive. We illustrate the limitation of existing search heuristics

in more detail in Section 2.

To enable adaptation, we present an algorithm that automatically

learns and switches search heuristics during concolic testing. The

algorithm maintains a set of search heuristics and continuously

changes them during the testing process. To do so, we first define

the space of possible search heuristics using the idea of parametric

search heuristic recently proposed in prior work [5]. A technical

challenge is how to adaptively switch search heuristics in the pre-

defined space.We address this challenge with a new concolic testing

algorithm that (1) accumulates the knowledge about the previously

evaluated search heuristics, (2) learns the probabilistic distributions

of the effective and ineffective search heuristics from the accumu-

lated knowledge, and (3) samples a new set of search heuristics
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from the distributions. The algorithm iteratively performs these

three steps until it exhausts a given time budget.

Experimental results demonstrate that shifting from the classi-

cal non-adaptive approaches to ours is essential for improving the

practicality of concolic testing. We implemented Chameleon on

top of CREST [8] and compared it with six existing approaches on

8 open-source C programs (up to 165KLoC). For all benchmarks,

Chameleon outperformed all existing non-adaptive search heuris-

tics in terms of both branch coverage and bug-finding in a practical

setting. In particular, Chameleon was highly effective in finding

various types of bugs, including segmentation faults, abnormal

termination, and memory exhaustion. For the latest versions of

vim, gawk, and grep, Chameleon succeeded to trigger those bugs

whereas all non-adaptive techniques failed to do so.

Contributions. Our contributions are as follows:

• We present Chameleon, a new approach for performing

concolic testing, which adaptively learns and changes search

heuristics online. To our knowledge, our work is the first

that raises the need for adapting search heuristics. Existing

works have focused on coming upwith new but non-adaptive

search heuristics [3–5, 19, 22, 26, 28].

• We provide extensive evaluation by comparing Chameleon

with six existing search heuristics in terms of branch cover-

age and bug-finding. We make our tool1 and data publicly

available.

2 CONVENTIONAL CONCOLIC TESTING

In this section, we describe traditional concolic testing and ex-

plain in what sense it is non-adaptive. Algorithm 1 and 2 describe

a conventional method for performing concolic testing, which

encapsulates the commonality of the approaches used in prior

work [3, 5, 11, 12, 28].

The procedure Concolic in Algorithm 1 takes as input a program

(P ) under test and a search heuristic (Heuristic), runs the program

concolically with the given search heuristic, and produces as output

the set (B) of branches covered during the concolic execution. We

assume that an initial input v0 is fixed and given for the subject pro-

gram P (line 2). The algorithm initially sets B to the empty set (line

3) and repeats the body of the loop at lines 4–9 for N times, where

N determines the number of times to execute the program with

the current search heuristic. At line 5, the program is concolically

executed with the current input vector v (i.e., Execute(P, v)), which
produces the path condition Φ = ϕ1 ∧ · · · ∧ ϕn , i.e., a conjunction
of symbolic branch conditions taken in the current execution. For

instance, assume that the two branch conditions exercised by the

execution are (x > 1) and (x > 10). When the symbolic variable

for x is α , the path condition Φ is ϕ1 ∧ ϕ2, where ϕ1 = (α > 1) and

ϕ2 = (α > 10). At line 6, the algorithm accumulates the covered

branches in the set B (where we write Branches(Φ) for the branch
ids covered by the current execution path). At line 7, the algorithm

uses the search heuristic (Heuristic) to choose a branch ϕi to be

negated in the next iteration. Then, at line 8, we generate a new

input vector v by finding a model of the constraint
∧
j<i ϕ j ∧ ¬ϕi

1Chameleon: https://github.com/kupl/Chameleon

Algorithm 1 Basic Concolic Testing Procedure

Input: A program (P ) under test and a search heuristic (Heuristic)

Output: The set (B) of covered branches

1: procedure Concolic(P , Heuristic)

2: v ← v0 � initial input v0
3: B ← ∅

4: form = 1 to N do

5: Φ ← Execute(P , v) � Φ = (ϕ1 ∧ · · · ∧ ϕn )

6: B ← B ∪ Branches(Φ)
7: ϕi ← Heuristic(Φ) � choose a branch

8: v ← model(
∧
j<i ϕ j ∧ ¬ϕi )

9: end for

10: return B

11: end procedure

via an SMT solver.2 The algorithm repeats the process described so

far, and returns the set B upon termination.

Algorithm 2 Conventional Method for Running Concolic Testing

Input: Program P , A set H of search heuristics

Output: The set T of covered branches

1: procedure Run(P , H )

2: T ← ∅

3: repeat

4: for each h ∈ H do

5: B ← Concolic(P , h)

6: T ← T ∪ B

7: end for

8: until timeout

9: return T

10: end procedure

Algorithm 2 describes how the procedure Concolic is used in

practice. The procedure Run takes a program P under test. Also, in

order to generalize existing approaches [3–5, 11, 12, 22, 28], it takes

a finite set H of search heuristics as input. Then, the algorithm

repeats the following process: 1) it performs Concolic with each

heuristic h in H (line 5), and 2) it adds covered branches (B) to
the set T of total branches (line 6). When the given time budget is

exhausted, the algorithm returns the set of branches covered so far.

Readers might wonder why we use Algorithm 2 instead of simply

using Algorithm 1 with larger N . In practice, running Algorithm 2

typically performs better than running Algorithm 1 alone because

of the randomness of search heuristics. We empirically corroborate

this claim in Section 4.5.

Existing approaches for performing concolic testing can be un-

derstood as instances of Algorithm 2. Most of the existing ap-

proaches to concolic testing use the algorithm with a single search

heuristic. For example, Burnim and Sen [3] perform concolic test-

ing by running Run(P, {CFDS}), where CFDS is a search heuristic

that exploits the control-flow information of the program. Seo and

Kim [28] propose to run Run(P, {CGS}), where CGS is a search

heuristic that performs the context-guided breadth-first search on

the execution tree. Cha et al. [5] also use the algorithm with a

single heuristic, i.e., Run(P, {Param}), where Param is a search

2If the constraint is unsatisfiable, the algorithm uses the search heuristic again to
choose another branch, which we omit in Algorithm 1 for simplicity.
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Figure 1: Venn diagrams of the number of branches covered

by each search heuristic.

heuristic generated automatically by a learning algorithm. A few

approaches [4, 22] use the algorithmwith a number of search heuris-

tics (e.g.,Run(P, {CFDS,CGS})) so as to combine existing heuristics

in a round-robin fashion.

Note that the conventional approach to concolic testing (i.e.,

Algorithm 2) is non-adaptive in that it uses the same set H of search

heuristics in every iteration of the outer loop at lines 3–8. In this pa-

per, we argue that this is a key limiting factor in existing approaches.

Using a fixed set of search heuristics implies fixed branch-selection

criteria, which is essentially limited to favoring specific areas of the

program only. In other words, different search heuristics are largely

incomparable in terms of the branch sets that they can cover during

concolic testing. For example, Figure 1 shows that there is no clear

winner among the top three heuristics for each program, where we

ran Algorithm 2 for 24 hours per heuristic to compare the sets of

branches covered by them. In this paper, we aim to mitigate this

problem by adaptively changing search heuristics during concolic

testing.

3 OUR APPROACH TO CONCOLIC TESTING

Unlike conventional concolic testing, our approach is adaptive and

changes the set H of search heuristics over the course of the testing

process. To achieve this, we need to define a space of possible search

heuristics and to develop an algorithm that can continuously learn

a new set of search heuristics from the space during the concolic

testing process. The latter constitutes the key contribution of this

paper (Section 3.2). For the former, we use the idea of parametric

search heuristic recently proposed in prior work [5].

3.1 Parametric Search Heuristics

Our work builds on the idea of parametric search heuristics [5],

which defines the space of possible search heuristics used in our ap-

proach. Cha et al. [5] defined a search heuristic, denotedHeuristicw,

which has a parameter w as follows:

Heuristicw(Φ) = argmax
ϕ j ∈Φ

scorew(ϕ j ) (Φ = ϕ1 ∧ · · · ∧ ϕn )

where the parameter w = 〈θ1, . . . , θd 〉 is a d-dimensional vector

of real numbers. Heuristicw takes a path-condition Φ and selects a

branch ϕ j with the highest score. To compute scores of branches,

each branch ϕ is represented by a feature vector. A feature feati

Algorithm 3 Our Approach to Concolic Testing

Input: Program P

Output: The set T of covered branches

1: 〈K , T 〉 ← 〈∅, ∅〉

2: H ← {(ϵ , h1), . . . , (ϵ , hη1 ) | hi ∼ U([−10, 10]d )}

3: repeat

4: G ← ∅

5: for each (_, h) ∈ H do

6: B ← Concolic(P , Heuristich )

7: T ← T ∪ B

8: G ← G ∪ {(h, B)}

9: end for

10: K ← if K = ∅ then G else Refine(K ,G , H )

11: (K1, K2) ← Select(K )

12: H ← Switch(K1, K2)

13: until timeout

14: return T

denotes a predicate describing characteristics of branches:

feati : B→ {0, 1}.

whereB is the set of branches in the program. For instance, a feature

may describe whether the branch ϕ is located inside a loop body or

not. If true, the feati (ϕ) is 1; otherwise, it is 0. With a predefined set

of d features, we are able to represent a branch by a d-dimensional

boolean vector as follows:

feat(ϕ) = 〈feat1(ϕ), feat2(ϕ), . . . , featd (ϕ)〉.

In this paper, we reused the 40 features (i.e., d=40) presented in [5],

where these are divided into 12 static and 28 dynamic features.

Using the predefined features, we transform each branch in a path-

condition into a feature vector. Then, the score for each branch ϕ
is calculated by a linear combination of the feature vector feat(ϕ)
and a given d-dimensional weight vector w:

scorew(ϕ) = feat(ϕ) ·w.

Lastly, we choose a branch ϕ j with the highest score in Φ.
With the parametric search heuristic described above, a search

heuristics corresponds to a d-dimensional weight vector. Thus, in

the rest of this paper, we will call the d-dimensional real-number

vectors search heuristics when there is no confusion. With this

convention, we write H = Rd for the space of possible search

heuristics, where R denotes real numbers between −10 and 10.

3.2 Overall Algorithm

Our approach reuses Algorithm 1 without modification but replaces

Algorithm 2 by Algorithm 3. Unlike Algorithm 2, our algorithm

does not take search heuristics as input; instead, it adaptively learns

and changes them throughout the process of concolic testing. At

each iteration of the outer loop (i.e., the repeat-until loop at lines

3–13), the algorithm evolves three sets:H ⊆ H×H is a set of search

heuristics,K ⊆ H×℘(B) the accumulated knowledge about previous

search heuristics from which we learn new heuristics, and T ⊆ B

the set of branches covered so far. Our algorithm represents a search

heuristic by a pair (h′,h) in order to keep track of the birthplace

information; the second component h is the actual heuristic that

we are interested in the current iteration while the first component

h′ is the parent of h that gave rise to h in the previous iteration.
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The algorithm begins with η1 randomly generated heuristics (line

2) (we fixed η1 = 100 in experiments):

H = {(ϵ,h1), (ϵ,h2), . . . , (ϵ,hη1 )}

where h1, . . . ,hη1 are independent random samples from the uni-

form distribution U([−10, 10]d ) and ϵ indicates that the initial

search heuristics do not have parents. Initially, K and T are empty

(line 1). With the inner loop at lines 5–9, the algorithm performs

concolic testing (i.e., Concolic(P,Heuristich )) with each heuristic

in H and generates the data G as follows:

G = {(h1,B1), . . . , (h |H |,B |H | )}

where hi is the current heuristic (i.e., (h
′,hi )) in H and Bi is the set

of branches covered by running concolic testing with hi . At the first
iteration, K becomesG at line 10 since K is initially empty. Starting

with this initial knowledge and search heuristics, the algorithm

keeps updating them. The knowledge is refined at line 10 using

the procedure Refine, and at lines 11 and 12, a new set of search

heuristics is generated from the knowledge using the procedures

Select and Switch. The algorithm repeats the process above until

a given time budget is exhausted. Upon termination, it returns the

set T of covered branches.

Example 3.1. Suppose that we have a set H of four initial heuris-

tics, h1,h2,h3 and h4, and running the Concolic procedure with

each heuristic produces the following data:

G = {(h1, {1, 2, 3, 4}), (h2, {1, 2, 3}), (h3, {5, 6}), (h4, {2, 3})} (1)

The setG means that the heuristic h1 succeeds in covering branches
1, 2, 3 and 4, the heuristic h2 covered branches 1, 2, and 3, and so

on. Note that at the end of the first iteration, the knowledge K is

identical to G. This way, the algorithm accumulates K that will be

used in later iterations to adaptively produce new search heuristics.

In essence, our algorithm aims to continuously switch the cur-

rent set H of search heuristics to a new one H ′, so that concolic

testing with H ′ can exercise new branches that were not explored

in previous iterations. That is, we would like to find a sequence of

sets of search heuristics H0,H1,H2, . . . such that⋃
(_,h)∈H0

Concolic(P,h) ∪
⋃

(_,h)∈H1

Concolic(P,h) ∪ · · ·

is maximized within a given time budget. Algorithm 3 can be un-

derstood as a practical solution for this problem, which does so

by combining the three procedures Refine, Select, and Switch

described below.

3.3 Select

Let us first describe the procedure Select. The goal of Select is to

select two sets, namely K1 and K2, of search heuristics from K :

Select(K) = (K1,K2).

Intuitively, K1 and K2 represent the most effective and most ineffec-

tive combinations of search heuristics in K that collectively achieve

the highest and lowest coverages, respectively, where the sizes of

K1 and K2 are fixed to η2, a predetermined hyperparameter of our

algorithm. In practice, we set η2 to be 
|K | × 0.03�, selecting 3% of

K . Formally, K1 is defined to be a set satisfying the two conditions:

(1) K1 is a subset of K such that |K1 | = η2, and

(2) for all K ′
1 ⊆ s.t. |K ′

1 | = η2,�� ⋃
(h,B)∈K ′

1

B
�� ≤ �� ⋃

(h,B)∈K1

B
��.

Similarly, K2 is a subset of K such that |K2 | = η2 and |
⋃

(h,B)∈K2
B |

is minimized. These top-η2 and bottom-η2 heuristics will be used for
adaptively learning the distributions of the effective and ineffective

search heuristics in the next step.

Example 3.2. Consider Example 3.1, where the current knowl-

edge K is identical to the set G in (1). Then, Select(K) produces
the following K1 and K2 when η2 = 2:

K1 = {(h1, {1, 2, 3, 4}), (h3, {5, 6})},K2 = {(h2, {1, 2, 3}), (h4, {2, 3})}

In words: h1 and h3 are top-2 heuristics that can cover as diverse

branches as possible. On the other hand, h2 and h4 are bottom-2

heuristics that cover the least number of branches. The branches

covered by K1 and K2 are {1, 2, 3, 4, 5, 6} and {1, 2, 3}, respectively.

Finding the sets K1 and K2 corresponds to solving the maximum

coverage problem (MCP), which is NP-hard. We use a simple greedy

algorithm [15] that progressively selects set elements that collec-

tively maximize (or minimize) the number of branches covered at

each step.

3.4 Switch

Once we select K1 and K2, we learn new search heuristics based

on the distributions of K1 and K2. The idea is to produce search

heuristics that are statistically similar to those in K1 but dissimilar

to those in K2. To do so, we collect the following set:⋃
(h,B)∈K1

Offspring(h,K2). (2)

That is, we consider each heuristic h ∈ K1 in turn, and produce its

offspring as follows:

Offspring(h,K2) = {(h,h1), . . . , (h,hη3 )}.

η3 is a hyperparameter that determines the number of offspring of

each parent h ∈ K1 (we set η3 = 10 in experiments). To generate

hi s that are similar to h but dissimilar to those in K2, we randomly

sample each heuristichi , which is ad-dimensional vector of weights,

from the sample space S1 × S2 × · · · × Sd , where Sj is a set of real
numbers defined as follows:

Sj = Sample({hj }) \\ Sample({h′j | (h′, _) ∈ K2}) (3)

where hj denotes the j-th component of vector h and Sample(R)
samples real numbers from the truncated normal distribution with

mean μ(R), standard deviation σ (R), and the interval [−10, 10]:

Sample(R) = {r1, r2, . . . , rn | ri ∼ N(μ(R),σ (R),−10, 10)}.

where the number (n) of samples, unless too small, does not matter

and μ(R) and σ (R) denote the median and standard deviation of the

set R of real numbers:

μ(R) =
∑
r ∈R

r

|R |
, σ (R) =

⎧⎪⎪⎨
⎪⎪⎩

√ ∑
r ∈R

(r−μ(R))2

|R |
if (|R | > 1)

1 otherwise

and S \\ S ′ computes the following:

S \\ S ′ = {{
e� | e ∈ S}} \ {{
e� | e ∈ S ′}}.
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The notation {{}} indicates that the sets are multisets allowing du-

plicated elements. For instance, for S = {2.7, 3.1, 3.4, 5.2} and

S ′ = {1.6, 2.4, 3.3, 4.9}, S \\ S ′ = {{2, 3, 3, 5}} \ {{1, 2, 3, 4}} = {{3, 5}}.

Note that, whenwe construct the sample space in (3), we generate

distributions by considering allweights of the j-th feature vector h′

in K2 (i.e., Sample({h′j | (h′, _) ∈ K2})) whereas we treat heuristics

in K1 separately. The intuition is to maintain the relationships

between the features that each top heuristic in K1 may have, while

maintaining the relationships between the features that all bottom

ones in K2 must have. We found that this is an important choice

for our algorithm to fully exploit the current knowledge; it enables

the algorithm to produce new heuristics that resemble good ones

while effectively avoiding bad ones.

With the set collected in (2), the procedure Switch(K1,K2) is

defined as follows:

Switch(K1,K2) = Exploit ∪ Explore

where Exploit is the set that contains η1 × η4 heuristics selected
from the set in (2) and Explore is the set of η1 × (1 − η4) randomly

generated heuristics to enable exploration:

Explore = {h1, . . . ,hη1×(1−η4) | hi ∼ U([−10, 10]d )}

where η4 is the hyperparameter that controls the tradeoff between

exploitation and exploration. We set η4 to 0.8 in experiments.

Feature Selection. To reduce the space of candidate search heuris-

tics, we can optimize the procedure Switch via feature selection.

When we construct the sample space Sj for the j-th weights in (3),

we simply define Sj = {0} if the j-th feature is uninformative. We

consider the i-th feature is uninformative if the weights of that

feature in K1 are statistically similar to those in K2. To calculate

the similarity, we first define the two sets, Gi and Bi , as follows:

Gi = {θ i | (〈θ1, θ2, · · · , θd 〉, _) ∈ K1}

Bi = {θ i | (〈θ1, θ2, · · · , θd 〉, _) ∈ K2}

where Gi and Bi are sets consisting of the i-th components of the

weight vectors in K1 and K2, respectively. Second, we collect the

features whose weights are similar in K1 and K2:

F = {i ∈ [1,d] | similar(Gi ,Bi )}

where similar(Gi ,Bi ) is true when the distributions of Gi and Bi
are similar in the following sense:

similar(Gi ,Bi ) ⇐⇒ |μ(Gi ) − μ(Bi )| + |σ (Gi ) − σ (Bi )| < 1.

Once we compute the set F of uninformative features, we define

Sj = {0} if j ∈ F .

3.5 Refine

The role of Refine refines the current knowledge K to make learn-

ing more effective. The procedure Refine takes three sets:K ,G , and
H , where K is the knowledge from the previous iteration, G is the

newly generated knowledge from the current iteration, andH is the

current set of search heuristics. Given (K,G,H ), Refine(K,G,H )

produces the refined knowledge K ′ as follows:

K ′ = (K ∪G) \ Kill

It first augments the previous knowledgeK with the new oneG and

then removes the set Kill from the result. Intuitively, Kill denotes

the parent heuristics that are turned out to be no longer useful

at the current iteration of the algorithm; Kill is the set of parents

whose offspring totally failed to cover new branches. We remove

those heuristics in K in order not to exploit them in vain again in

later iterations, which makes the overall learning process smarter.

Formally, Kill is defined as follows:

Kill = {(h′,B′) ∈ K | (h′, _) ∈ H ,
⋃

(h′,h)∈H ,(h,B)∈G

B ⊆
⋃

(h,B)∈K

B}.

In words: (h′,B′) in K is removed if h′ is a parent of some cur-

rent search heuristics in H , i.e., (h′, _) ∈ H , and the offspring of

h′ fail to exercise new branches over the current knowledge, i.e.,⋃
(h′,h)∈H ,(h,B)∈G B ⊆

⋃
(h,B)∈K B.

Example 3.3. Consider the second iteration of Algorithm 3 and

the set in (1) is the previous knowledge:

K = {(h1, {1, 2, 3, 4}), (h2, {1, 2, 3}), (h3, {5, 6}), (h4, {2, 3})}

and the currentH (withη3 = 2) is {(h1,h5), (h1,h6), (h3,h7), (h3,h8)}
with the following profiles:

G = {(h5, {1, 3, 4, 6}), (h6, {1, 2, 3, 4, 5, 6}), (h7, {5, 7}), (h8, {3, 8})}

Then, the set Kill is as follows:

Kill = {(h1, {1, 2, 3, 4})}

because the offspring of h1 are h5 and h6, and the set {1, 2, 3, 4, 5, 6}
of branches covered by h1 and h5 according to G is subsumed by

the set of branches contained in the previous knowledge K . The
refined knowledge is:

K ′ = {(h2, {1, 2, 3}), (h3, {5, 6}), (h4, {2, 3}), (h5, {1, 3, 4, 6}),
(h6, {1, 2, 3, 4, 5, 6}), (h7, {5, 7}), (h8, {3, 8})}.

Note that h1 is removed from K , so it will not be selected for ex-

ploitation in the future iterations of Algorithm 3.

Hyperparameters. Our algorithm involves four hyperparame-

ters (η1, η2, η3, and η4) for which appropriate values are assumed to

be given beforehand. The first hyperparameter η1 determines the

pool size of search heuristics. η2 in the Select procedure denotes

the number of effective (and ineffective) search heuristics to be se-

lected from the knowledge K . The remaining two hyperparameters

are required in the Switch procedure; η3 determines the number

of offspring to be generated from each effective heuristic and the

last one η4 is the exploitation rate. In experiments, we set η1 = 100,

η2 = 
|K | × 0.03�, η3 = 10, and η4 =0.8. Basically, we decided these

hyperparameters by trial and error but found that most of them

require no fine tuning. An exception was η4 , for which choosing a

right value was important for the performance. In Section 4.5, we

discuss how the performance changes with different values of η4.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our approach. We

implemented our approach in a tool, called Chameleon, on top

of CREST [8] and ParaDySE [5]. CREST is an open-source frame-

work for concolic testing of C programs widely used in prior work

(e.g., [3, 5, 6, 9, 22, 24, 28]). ParaDySE provides a publicly available

implementation3 of the parametric search heuristic in Section 3.1.

We evaluate Chameleon from the three perspectives:

3https://github.com/kupl/ParaDySE
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Table 1: 8 benchmark programs

Program #Branches LOC Source

vim-5.7 35,464 165K [3, 5, 6, 25]

gawk-3.0.3 8,038 30K [5, 6]

grep-2.2 3,836 15K [3, 5, 6, 28]

sed-1.17 2,650 9K [5, 6, 21]

cdaudio 358 3K [5, 17, 28]

floppy 268 2K [5, 17, 28]

kbfiltr 204 1K [5, 17, 28]

replace 196 0.5K [3, 5, 21, 28]

(1) Branch coverage: How effectively does Chameleon in-

crease branch coverage? How does it compare to conven-

tional concolic testing with existing non-adaptive search

heuristics? (Section 4.2)

(2) Bug-finding: How effectively does Chameleon find bugs?

Does it find more bugs than conventional concolic testing?

Does it find nontrivial bugs that are hard to fix? (Section 4.3)

(3) Efficacy of learning algorithm: Is our learning algorithm

(Section 3) essential for achieving the desired results? How

effective is it compared to simpler techniques? (Section 4.4)

4.1 Experimental Setup

Benchmarks. We evaluated Chameleon on 8 open-source pro-

grams in Table 1. We used these benchmarks because they were

commonly used in previous works on concolic testing [3, 5, 6, 17,

21, 25, 28]. These benchmarks are divided into 4 large and 4 small

programs. The former consists of vim, gawk, grep, and sed, which
have at least 2,000 branches; the latter includes cdaudio, floppy,
kbfiltr, and replace. We did not use expat-2.10, which is used

in [5, 28], because we found it is less suitable for concolic testing

without prior knowledge about the input format (XML).

Existing Search Heuristics. We compared Chameleon with

six recent or well-known search heuristics: Param (Parametric

Search) [5], CGS (Context-Guided Search) [28], CFDS (Control-Flow

Directed Search) [3], Gen (Generational search) [12], and Random
(Random branch search) [3], and RoundRobin (RR). RoundRobin is
a combination of the first five heuristics, which uses them in a

round-robin fashion. CFDS and Random are available in CREST, and

Param, Gen and CGS are available in ParaDySE. We did not consider

naive heuristics such as DFS and BFS, because their performance is

not competitive as shown in the prior works [3, 5, 28].

Time Budget. We allocated 24 hours as a testing budget to the

four large programswhile allocating one hour to the four small ones.

For the large programs, we gave enough time budget (i.e., 24 hours)

to compare the performance of Chameleon and existing search

heuristics in a truly practical setting. By contrast, we observed that

the time budgets commonly used in previous works are not very

realistic. For example, previous works on search heuristics [3, 5, 28]

conducted experiments with small time budgets needed to execute

each program 4,000 times, which corresponds to 1–30 minutes for

the benchmark programs in Table 1 in our environment. According

to our experience, these budgets are too small to appropriately

Table 2: Average branch coverage achieved by Chameleon

and 6 search heuristics on 4 small benchmarks

Chameleon RR CFDS CGS Param Gen Random

cdaudio 250 250 250 250 250 250 250

floppy 205 205 205 205 205 205 196

replace 181 181 181 181 181 181 181

kbfiltr 149 149 149 149 149 149 149

Table 3: The number of branches exclusively covered by

each technique on 4 large benchmarks

Chameleon RR CFDS CGS Param Gen Random

vim-5.7 364 37 62 163 272 50 82

gawk-3.0.3 136 4 3 4 0 1 4

grep-2.2 55 0 4 3 0 0 0

sed-1.17 43 0 9 3 7 3 0

Total 598 41 78 173 279 54 86

evaluate the practical performance of concolic testing, especially

for large programs such as vim.

Others. All experiments were conducted under the same set-

tings. First, we used the same initial inputs provided together with

each benchmark program. Second, we conducted all experiments

on the same machine with two Intel Xeon Processors E5-2630 and

192GB RAM. Third, we performed concolic testing on a single core

for all benchmarks except for vim. This is because we found that

the branch coverage did not converge within 24 hours for vim. We

accelerated the convergence by running concolic testing for vim
using 10 cores in parallel, which means a total of 240 hours are in

fact spent for testing vim.4 Forth, we set N in Algorithm 1 to 4,000.

Finally, to calculate the average performance of the six existing

heuristics and Chameleon, we repeated all the experiments 3 times

and averaged the results.

4.2 Branch Coverage

Let us first compare Chameleon and conventional concolic test-

ing in terms of branch coverage. We use two metrics, average

branch coverage and exclusively covered branches. In both cases,

Chameleon performs much better than existing approaches.

Average Branch Coverage. Figure 2 compares average branch

coverage achieved by Chameleon and conventional approaches on

four large benchmarks. The results show that Chameleon impres-

sively outperforms the existing approaches in all cases. In particular,

the results for the two largest programs (vim and gawk) are notewor-
thy: Chameleon was able to reach 15,468 branches covering 399

more branches than Param, a state-of-the-art that already covers 283
more branches over RoundRobin. For gawk, Chameleon covered

3,564 branches while the second best heuristic (RoundRobin) man-

aged to exercise 3,350 branches within the same time budget. For

grep and sed, Chameleon was the clear winner as well, covering

2,271 and 1,696 branches, respectively. For the small benchmarks,

4Algorithms 2 and 3 are easily parallelizable without dependency between parallel
tasks.
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Figure 2: Average branch coverage achieved by Chameleon and 6 search heuristics on 4 large benchmarks

Figure 3: Venn-diagrams depicting the sets of branches covered by the top-3 heuristics for each large benchmark

Chameleon and others, except for Random, achieved exactly the

same branch coverage within the 1 hour time budget (Table 2).

ExclusivelyCoveredBranches. Wealso comparedChameleon

and the existing approaches in terms of the set of covered branches.

Table 3 reports the number of branches that each technique exclu-

sively covered over the other 6 techniques. In this metric as well,

Chameleon is much better than the existing search heuristics. In

total, 598 branches were covered exclusively by Chameleon. In

particular, note that, for all benchmarks except for vim, the number

of unique branches covered by Chameleon alone is greater than

the number of unique branches covered by all the other techniques,

which implies that Chameleon is better than any combinations

of the six existing heuristics. For example, for gawk, the former is

136 while the latter is 16. Similarly, for grep, the number of unique

branches covered by Chameleon is about 8 times more than the

number of branches that all the other techniques exclusively can

cover. For vim, Chameleon is still the best but it is not enough to

say it is a clear winner. This is because the size of vim is so large

that all the techniques, including Chameleon, have not converged

yet even though we performed concolic testing for 24 hours using
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Table 4: Comparison of bug-finding ability of ours (Chameleon) and existing approaches on 4 large benchmarks.

Benchmarks Versions Error Types Bug-Triggering Inputs OURS Param RR CGS CFDS Gen Random

vim

8.1* Non-termination K1!1000100100111110( � � � � � � �

5.7

Abnormal-termination H:w>>ˋ"ˋ\ [press ‘Enter’] � � � � � � �

Segmentation fault =ipI\-9∼qOqw � � � � � � �

Non-termination v(ipaprq&T$T � � � � � � �

gawk

4.2.1* Memory-exhaustion '+E_Q$h+w$8==++$6E8#' � � � � � � �

3.0.3
Abnormal-termination 'f[][][][][y]^/#[' � � � � � � �

Non-termination '$g?E2^=-E-2"?^+$=":/?/#["' � � � � � � �

grep

3.1*
Abnormal-termination '\(\)\1*?*?\|\W*\1W*' � � � � � � �

Segmentation fault '\(\)\1^*@*\?\1*\+*\?' � � � � � � �

2.2
Segmentation fault "_^^*9\|^\(\)\'\1*$" � � � � � � �

Non-termination '\({**+**\)*\++*\1*\+' � � � � � � �

sed 1.17 Segmentation fault '{:};:C;b' � � � � � � �

10 cores in parallel. Figure 3 shows the Venn-diagrams that depict

the relationships between the branches covered by each technique,

where we only consider top-3 techniques for each benchmark.

4.3 Bug-Finding

Now we compare Chameleon and conventional concolic testing

in terms of bug-finding. In short, Chameleon is highly effective

in finding real-bugs; for the latest versions of vim, gawk, and grep,
Chameleon succeeded to generate bug-triggering inputs while all

the other techniques failed to do so.

Setup. While conducting the experiments in Section 4.2, we

monitored program execution and collected bug-triggering inputs

generated by Chameleon and other six techniques. Specifically, we

considered two types of bugs: program crashes and performance

bugs. First, to collect crashing inputs, we monitored the system

signals (e.g., SIGSEGV) after executing the program with each input

that Chameleon and other techniques generated. Second, we col-

lected the performance bugs by checking if the program execution

with each input would exhaust a time or memory bound. After

collecting the bug-triggering inputs for each technique, we filtered

the genuine bugs that are reproducible on the original binary of

each benchmark program without annotations for concolic testing

and excluded irreproducible ones. Finally, we further classify the

collected bugs into 4 categories: segmentation fault (SIGSEGV),

abnormal-termination (SIGABRT), non-termination, and memory-

exhaustion.

Results. Table 4 shows the results on two versions of each bench-

mark program: the original version used in Section 4.2 (on which

we found bugs) and the latest version at the time of writing. For

each benchmark, the table shows the program version (Versions),

the error type (Error Types), one of the bug-triggering inputs gen-

erated by Chameleon (Bug-Triggering Inputs), and the success (�)

and failure (�) results for each technique. The success mark (�) for

a technique indicates that the technique succeeded to generate at

least one input that causes the corresponding error type, whereas

the failure mark (�) means the technique totally failed to trigger

the error type.

The results show that Chameleon outperforms the existing

techniques in terms of bug-finding. In particular, Chameleon was

unique in finding bugs that can be triggered in the latest versions of

vim, gawk, and grep. Furthermore, Chameleonwas able to find var-

ious types of errors, including non-termination (vim-8.1), memory-

exhaustion (gawk-4.21), and abnormal termination (grep-3.1). In
total, Chameleon could trigger 12 different types of errors across

all programs and their versions. On the other hand, the other tech-

niquesmanaged to trigger 6 types of errors at best. The performance

of existing techniques varied depending on the benchmark while

Chameleon consistently performed well on 4 large benchmarks.

We found that Chameleon is effective in finding hard-to-find

bugs. For example, the input '\(\)\1*?*?\|\W*\1W*' generated
by Chameleon causes a segmentation fault in grep-3.1. Surpris-
ingly, this bug survived over the last 20 years from grep-2.2 (1998)
to grep-3.1 (2018). Chameleon also found deadly bugs. For ex-

ample, on gawk-4.21, the input '+E_Q$h+w$8==++$6E8#' found

by Chameleon causes a serious performance bug that may con-

sume all the memory of the machine. All the bug-triggering inputs

in Table 4 are easily reproducible. For instance, on grep-3.1, the
command ./grep '\(\)\1*?*?\|\W*\1W*' file (where file is
an arbitrary file) immediately aborts the program execution.

Figure 4 also adds to evidence that Chameleon is good at finding

difficult bugs. The figures show how many bug-triggering inputs

found by each technique in the initial programs survive as programs

evolve, where the hypothesis is that difficult bugs would survive

longer than shallow bugs. In the case of grep, Chameleon consis-

tently achieves the highest number of reproducible bug-triggering

inputs over the subsequent program versions. Meanwhile, all bugs

found by other techniques, except for CGS, did not survive after

grep-2.4, and only a single bug-triggering input found by CGS
remains in grep-2.6. For gawk-3.0.3 (the initial version), note
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Figure 4: Comparison of the number of bug-triggering inputs that survive over program evolution
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Figure 5: Comparison between random-sampling and our learning algorithm

that Chameleon is not the winner as Random and CFDS find more

bug-triggering inputs. However, as the program evolves, the situa-

tion is completely reversed; all of the 28,000 bug-triggering inputs

generated by Random in the original version failed to survive in the

next version (gawk-3.0.4). That is, Random is likely to find bugs

that are comparatively easy to fix. On the other hand, 22 inputs

discovered by Chameleon are reproducible until the version 3.1.0

without being fixed for more than 4 years.

4.4 Efficacy of Learning Algorithm

We evaluated the efficacy of our algorithm by comparing it with a

much simpler algorithm that randomly changes search heuristics.

The naive algorithm can be easily implemented by sampling the

set H randomly before line 5 of Algorithm 3 and ignoring the lines

10–12 for Refine, Select, and Switch. For each iteration of the

outer loop of Algorithm 3, we compared the cumulative branch

coverage achieved by our algorithm and the naive algorithm for

vim-5.7 and sed-1.17.

Figure 5 shows that our learning algorithm for adaptively chang-

ing search heuristics is essential. For vim-5.7, when the testing bud-
get (24h) is exhausted, our algorithm is able to cover 15,468 branches,

covering 588 more branches than the random sampling method. In

the first iteration where both algorithms relied on random sampling,

our algorithm unfortunately started with initial search heuristics

with lower quality compared to the naive algorithm. However, in

the next iteration, our algorithm immediately succeeded in switch-

ing search heuristics that can cover more branches than the naive

one. As the iteration of both algorithms goes on, the difference

in branch coverage achieved by each algorithm becomes larger

as follows: I2(146), I3(300), I4(417), · · · , I13(588). For sed-1.17, we
obtained the similar conclusion; until the fourth iteration at which

the knowledge (K ) was not accumulated sufficiently, our algorithm

had similar performance compared to the random sampling method.

However, ours covered around 1,700 branches in the end, where it

learns to increase the branch coverage over the random method by

around 100.
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Table 5: Coverage variation by exploitation rate (sed-1.17)

exploitation rate 0% 20% 40% 60% 80% 100%

# branches 1,612 1,611 1,638 1,679 1,696 1,672

Table 6: Average branch coverage achieved by each heuris-

tic on Algorithm 1 and 2 (24h). We set N to ∞ and 4,000 for

Algorithm 1 (A1) and Algorithm 2 (A2), respectively.

gawk-3.0.3 grep-2.2 sed-1.17

A1 A2 A1 A2 A1 A2

CFDS [3] 3,350 3,349 2,132 2,125 1,548 1,632

CGS [28] 2,767 3,095 1,922 2,074 1,208 1,487

Random [3] 3,113 3,091 1,924 2,014 1,481 1,253

Gen [12] 2,336 3,184 1,797 2,003 1,106 1,550

Param [5] 2,828 2,939 2,014 1,956 1,031 1,517

Total 14,394 15,658 9,789 10,172 6,374 7,439

4.5 Discussions

Exploration and Exploitation. In our algorithm (Section 3),

the hyperparameter η4 for balancing exploration and exploitation

was crucial for obtaining the desired results. For example, Table 5

shows that Chameleon achieves the highest branch coverage on

sed-1.17 when the exploitation rate is around 80%. We obtained

similar results for other programs and set η4 to 0.8. In experiments,

we found hyperparameters by trial and error. To be systematic, it

would be possible to use algorithms for tuning hyperparameters

automatically from the machine-learning community (e.g., [2]).

Algorithm 1 vs Algorithm 2. In practice, within the same time

budget, performing concolic testing with a small budget multiple

times (i.e., Algorithm 2) is more effective than performing Algo-

rithm 1 alone with large N until timeout. Table 6 shows that using

Algorithm 1 with N = ∞ is far inferior to using Algorithm 2 with

small N (4,000) on 3 large benchmarks. For instance, for gawk, run-
ning Algorithm 2 covered 15,658 branches in total, while running

Algorithm 1 covered 14,394 branches only.

Threats to Validity. First, our evaluation used 8 benchmark

programs that have been commonly used in prior works [3, 5, 6, 17,

21, 25, 28]. However, these programs may not be sufficient to draw

a firm conclusion in general. Second, to run Chameleon, we manu-

ally tuned the hyper-parameters that work well on our benchmarks.

However, these values may not suit arbitrary programs.

5 RELATEDWORK

In this section, we discuss two lines of researches that are most

related to ours: techniques for employing search heuristics [3–5, 12,

22, 28] and combining learning and software testing [6, 7, 13, 16, 18,

23, 29, 31]. The former aims to mitigate the path-explosion problem

of concolic testing by presenting search heuristics. The latter aims

to solve various problems of software testing with learning.

Search Heuristics. All previous works on search heuristics [3–

5, 12, 22, 28] have focused on coming upwith a new branch selection

strategy. However, in this paper, we claim that any single search

heuristics or their limited combinations are not sufficient. The se-

lection criterion of CFDS [3] is to randomly pick one of the branches

that are closest to uncovered branches in the current execution path.

The CGS [28] heuristic is to randomly select one of the branches at

the same depth of execution tree by BFS heuristic, while excluding

branches with already explored "context". The strategy of Param [5]
is to select the branch with the highest score in the current path,

where each branch score is calculated as a linear combination of the

branch feature vector and a given weight vector. To do so, the tech-

nique works in two steps: offline and online phases. In the offline

phase, a learning algorithm is run to produce a search heuristic

that is optimal for a subject program. Then, the learned heuristic

(Param) is used for testing the subject program (the online phase).

Note that the Param heuristic does not change during the online

phase and therefore we call it non-adaptive. In contrast, our work

focuses on adapting search heuristics during concolic testing (i.e.,

Chameleon can be used without the offline learning phase).

Combining Testing and Learning. At a high-level, our work

belongs to the techniques that combine software testing and learn-

ing [6, 7, 13, 16, 18, 23, 29, 31], which leverage machine-learning

technologies to solve various problems of software testing. Con-

Test [6] aims to reduce the search space of concolic testing by online

learning, where the goal is to selectively generate symbolic vari-

ables. In Continuous Integration (CI), RECTECS [29] first uses a

reinforcement learning to effectively select and prioritize failing

test cases. In Android GUI testing, QBE [23] also employs a rein-

forcement learning algorithm (Q-learning) to learn the GUI actions

that are likely to increase activity coverage, enabling crash detec-

tion. In fuzzing, Learn&Fuzz [13] aims to learn the structure of

PDF objects to increase the effectiveness of input fuzzing by using

neural-network-based learning techniques. Similarly, for fuzzing,

Skyfire [31] aims to generate well-distributed seed inputs, thereby

achieving the highest code coverage. To do so, it learns a proba-

bilistic context-sensitive grammar from large amount of existing

samples. Unlike the previous works, our work employs a learning

algorithm to adaptively change search heuristics online in concolic

testing.

6 CONCLUSION

Designing effective ways of employing search heuristic is an on-

going challenge in concolic testing. In this paper, we presented

Chameleon to adaptively learn and change search heuristics dur-

ing concolic testing. Experiments with open-source programs show

that Chameleon outperforms a number of state-of-the-art, yet non-

adaptive, approaches in both code coverage and bug detection. Our

results suggest that, unlike existing approaches that rely on specific

heuristics, search heuristics should be changed adaptively during

concolic testing.
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