
Large Spurious Cycle in Global Static Analyses

and Its Algorithmic Mitigation

Hakjoo Oh

School of Computer Science and Engineering
Seoul National University

Abstract. We present a simple algorithmic extension of the classical
call-strings approach to mitigate substantial performance degradation
caused by spurious interprocedural cycles. Spurious interprocedural cy-
cles are, in a realistic setting, key reasons for why approximate call-return
semantics in both context-sensitive and -insensitive static analysis can
make the analysis much slower than expected.

In the traditional call-strings-based context-sensitive static analysis,
because the number of distinguished contexts must be finite, multiple
call-contexts are inevitably joined at the entry of a procedure and the
output at the exit is propagated to multiple return-sites. We found that
these multiple returns frequently create a single large cycle (we call it
“butterfly cycle”) covering almost all parts of the program and such a
spurious cycle makes analyses very slow and inaccurate.

Our simple algorithmic technique (within the fixpoint iteration algo-
rithm) identifies and prunes these spurious interprocedural flows. The
technique’s effectiveness is proven by experiments with a realistic C ana-
lyzer to reduce the analysis time by 7%-96%. Since the technique is algo-
rithmic, it can be easily applicable to existing analyses without changing
the underlying abstract semantics, it is orthogonal to the underlying
abstract semantics’ context-sensitivity, and its correctness is obvious.

1 Introduction

In a global semantic-based static analysis, it is inevitable to follow some spurious
(unrealizable or invalid) return paths. Even when the underlying abstract se-
mantics is context-sensitive, because the number of distinguished contexts must
be finite, multiple call-contexts are joined at the entry of a procedure and the
output at the exit are propagated to multiple return-sites. For example, in a con-
ventional way of avoiding invalid return paths by distinguishing a finite k ≥ 0
call-sites to each procedure, the analysis is doomed to still follow spurious paths
if the input program’s nested call-depth is larger than the k. Increasing the k
to remove more spurious paths quickly hits a limit in practice because of the
increasing analysis cost in memory and time.

In this article we present the following:

– in a realistic setting, these multiple returns often create a single large flow
cycle (we call it “butterfly cycle”) covering almost all parts of the program,

Z. Hu (Ed.): APLAS 2009, LNCS 5904, pp. 14–29, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Large Spurious Cycle in Global Static Analyses 15

– such big spurious cycles make the conventional call-strings method that dis-
tinguishes the last k call-sites [14] very slow and inaccurate,

– this performance problem can be relieved by a simple extension of the call-
strings method,

– our extension is an algorithmic technique within the worklist-based fixpoint
iteration routine, without redesigning the underlying abstract semantics, and

– the algorithmic technique works regardless of the underlying abstract seman-
tics’ context-sensitivity. The technique consistently saves the analysis time,
without sacrificing (or with even improving) the analysis precision.

1.1 Problem: Large Performance Degradation By Inevitable,
Spurious Interprocedural Cycles

Static analysis’ inevitable spurious paths make spurious cycles across procedure
boundaries in global analysis. For example, consider the semantic equations in
Fig 1 that (context-insensitively (k > 0)) abstract two consecutive calls to a
procedure. The system of equations says to evaluate equation (4) and (6) for
every return-site after analyzing the called procedure body (equation (3)). Thus,
solving the equations follows a cycle: (2) → (3) → (4) → (5) → (2) → · · · .

Such spurious cycles degrade the analysis performance both in precision and
speed. Spurious cycles exacerbate the analysis imprecision because they model
spurious information flow. Spurious cycles degrade the analysis speed too because
solving cyclic equations repeatedly applies the equations in vain until a fixpoint
is reached.

The performance degradation becomes dramatic when the involved interpro-
cedural spurious cycles cover a large part of the input program. This is indeed
the case in reality. In analyzing real C programs, we observed that the analysis
follows (Section 2) a single large cycle that spans almost all parts of the in-
put program. Such spurious cycles size can also be estimated by just measuring
the strongly connected components (scc) in the “lexical”1 control flow graphs.
Table 1 shows the sizes of the largest scc in some open-source programs.2 In
most programs, such cycles cover most (80-90%) parts of the programs. Hence,
globally analyzing a program is likely to compute a fixpoint of a function that de-
scribes almost all parts of the input program. Even when we do context-sensitive
analysis (k > 0), large spurious cycles are likely to remain (Section 2).

1.2 Solution: An Algorithmic Mitigation without Redesigning
Abstract Semantics

We present a simple algorithmic technique inside a worklist-based fixpoint it-
eration procedure that, without redesigning the abstract semantics part, can
1 One node per lexical entity, ignoring function pointers.
2 We measured the sizes of all possible cycles in the flow graphs. Note that interpro-

cedural cycles happen because of either spurious returns or recursive calls. Because
recursive calls in the test C programs are immediate or spans only a small number
of procedures, large interprocedural cycles are likely to be spurious ones.

16 H. Oh

call1 = · · · · · · (1)
entry = call1 � call5 · · · (2)

exit = F̂bodyf
(entry) · · · (3)

return4 = exit · · · (4)
call5 = return4 · · · (5)
return6 = exit · · · (6)

Fig. 1. Spurious cycles because of abstract procedure calls and returns. The right-hand
side is a system of equations and the left-hand side shows the dependences between
the equations. Note a dependence cycle (2) → (3) → (4) → (5) → (2) → · · · .

effectively relieve the performance degradation caused by spurious interprocedu-
ral cycles in both context-sensitive (k > 0) and -insensitive (k = 0) analysis.

While solving flow equations, the algorithmic technique simply forces proce-
dures to return to their corresponding called site, in order not to follow the last
edge (edge (3) → (4) in Fig 1) of the “butterfly” cycles. In order to enforce this,
we control the equation-solving orders so that each called procedure is analyzed
exclusively for its one particular call-site. To be safe, we apply our algorithm to
only non-recursive procedures.

Consider the equation system in Fig 1 again and think of a middle of the
analysis (equation-solving) sequence, · · · → (5) → (2) → (3), which indicates
that the analysis of procedure f is invoked from (5) and is now finished. After
the evaluation of (3), a classical worklist algorithm inserts all the equations,
(4) and (6), that depend on (3). But, if we remember the fact that f has been
invoked from (5) and the other call-site (1) has not invoked the procedure until
the analysis of f finishes, we can know that continuing with (4) is useless, because
the current analysis of f is only related to (5), but not to other calls like (1). So,
we process only (6), pruning the spurious sequence (3) → (4) → · · · .

We integrated the algorithm inside an industrialized abstract-interpretation-
based C static analyzer [5,6] and measured performance gains derived from
avoiding spurious cycles. We have saved 7%-96% of the analysis time for context-
insensitive or -sensitive global analysis for open-source benchmarks.

1.3 Contributions

– We present a simple extension of the classical call-strings approach, which
effectively reduces the inefficiency caused by large, inevitable, spurious in-
terprocedural cycles.

We prove the effectiveness of the technique by experiments with an
industrial-strength C static analyzer [5,6] in globally analyzing medium-scale
open-source programs.

Large Spurious Cycle in Global Static Analyses 17

Table 1. The sizes of the largest strongly-connected components in the “lexical” control
flow graphs of real C programs. In most cases, most procedures and nodes in program
belong to a single cycle.

Program Procedures in the largest cycle Basic-blocks in the largest cycle

spell-1.0 24/31(77%) 751/782(95%)
gzip-1.2.4a 100/135(74%) 5,988/6,271(95%)
sed-4.0.8 230/294(78%) 14,559/14,976(97%)
tar-1.13 205/222(92%) 10,194/10,800(94%)
wget-1.9 346/434(80%) 15,249/16,544(92%)
bison-1.875 410/832(49%) 12,558/18,110(69%)
proftpd-1.3.1 940/1,096(85%) 35,386/41,062(86%)

– The technique is meaningful in two ways. Firstly, the technique aims to
alleviate one major reason (spurious interprocedural cycles) for substantial
inefficiency in global static analysis.

Secondly, it is purely an algorithmic technique inside the worklist-based
fixpoint iteration routine. So, it can be directly applicable without chang-
ing the analysis’ underlying abstract semantics, regardless of whether the
semantics is context-sensitive or not. The technique’s correctness is obvious
enough to avoid the burden of a safety proof that would be needed if we
newly designed the abstract semantics.

– We report one key reason (spurious interprocedural cycles) for why less ac-
curate context-sensitivity actually makes the analyses very slow. Though
it is well-known folklore that less precise analysis does not always have
less cost [10,12], there haven’t been realistic experiments about the explicit
reason.

1.4 Related Work

We compare, on the basis of their applicability to general semantic-based static
analyzers3, our method with other approaches that eliminate invalid paths.

The classical call-strings approach that retains the last k call-sites [14,1,9,10]
is popular in practice but its precision is not enough to mitigate large spurious
cycles. This k-limiting method is widely used in practice [1,9,10] and actually
it is one of very few options available for semantic-based global static analysis
that uses infinite domains and non-distributive flow functions (e.g., [1,6]). The
k-limiting method induces a large spurious cycle because it permits multiple
returns of procedures. Our algorithm is an extension of the k-limiting method
and adds extra precision that relieves the performance problem from spurious
interprocedural cycles.

3 For example, such analyzers include octagon-based analyzers (e.g.,[2]), interval-based
analyzers (e.g.,[5,6]), value set analysis [1], and program analyzer generators (e.g,
[9]), which usually use infinite (height) domains and non-distributive flow functions.

18 H. Oh

Another approximate call-strings method that uses full context-sensitivity
for non-recursive procedures and treats recursive call cycles as gotos is practi-
cal for points-to analysis [15,16] but, the method is too costly for more gen-
eral semantic-based analysis. Though these approaches are more precise than
k-limiting method, it is unknown whether the BDD-based method [16] or regular-
reachability [15] are also applicable in practice to general semantic-based ana-
lyzers rather than pointer analysis. Our algorithm can be useful for analyses for
which these approaches hit a limit in practice and k-limiting is required.

Full call-strings approaches [14,7,8] and functional approaches [14] do not suf-
fer from spurious cycles but are limited to restricted classes of data flow analysis
problems. The original full call-strings method [14] prescribes the domain to be
finite and its improved algorithms [7,8] are also limited to bit-vector problems
or finite domains. Khedker et al.’s algorithm [8] supports infinite domains only
for demand-driven analysis. The purely functional approach [14] requires com-
pact representations of flow functions. The iterative (functional) approach [14]
requires the domain to be finite.

Reps et al.’s algorithms [11,13] to avoid unrealizable paths are limited to
analysis problems that can be expressed only in their graph reachability frame-
work. Their algorithm cannot handle prevalent yet non-distributive analyses.
For example, our analyzer that uses the interval domain with non-distributive
flow functions does not fall into either their IFDS [11] or IDE [13] problems.
Meanwhile, our algorithm is independent of the underlying abstract semantic
functions. The regular-reachability [15], which is a restricted version of Reps et
al.’s algorithm [11], also requires the analysis problem to be expressed in graph
reachability problem.

Chambers et al.’s method [4] is similar to ours but entails a relatively large
change to an existing worklist order. Their algorithm analyzes each procedure
intraprocedurally, and at call-sites continues the analysis of the callee. It returns
to analyze the nodes of the caller only after finishing the analysis of the callee.
Our worklist prioritizes the callee only over the call nodes that invoke the callee,
not the entire caller, which is a relatively smaller change than Chambers et al.’s
method. In addition, they assume worst case results for recursive calls, but we
do not degrade the analysis precision for recursive calls.

2 Performance Problems Due to Large Spurious Cycles

If a spurious cycle is created by multiple calls to a procedure f , then all the
procedures that are reachable from f or that reach f via the call-graph belong
to the cycle because of call and return flows. For example, consider a call-chain
· · · f1 → f2 · · · . If f1 calls f2 multiple times, creating a spurious butterfly cycle
f1 �� f2 between them, then fixpoint-solving the cycle involves all the nodes of
procedures that reach f1 or that are reachable from f2. This situation is common
in C programs. For example, in GNU software, the xmalloc procedure, which is
in charge of memory allocation, is called from many other procedures, and hence
generates a butterfly cycle. Then every procedure that reaches xmalloc via the
call-graph is trapped into a fixpoint cycle.

Large Spurious Cycle in Global Static Analyses 19

spell-1.0 (total #procs:31) sed-4.0.8 (total #procs:294)
(2,213 LOC, > 30 repetitions) (26,807 LOC, > 150 repetitions)

Fig. 2. Analysis localities. Because of butterfly cycles, similar patterns are repeated
several times during the analysis and each pattern contains almost all parts of the
programs.

In conventional context-sensitive analysis that distinguishes the last k call-
sites [14], if there are call-chains of length l (> k) in programs, it’s still possible
to have a spurious cycle created during the first l − k calls. This spurious cycle
traps the last k procedures into a fixpoint cycle by the above reason.

One spurious cycle in a real C program can trap as many as 80-90% of basic
blocks of the program into a fixpoint cycle. Fig 2 shows this phenomenon. In the
figures, the x-axis represents the execution time of the analysis and the y-axis
represents the procedure name, which is mapped to unique integers. During the
analysis, we draw the graph by plotting the point (t, f) if the analysis’ worklist
algorithm visits a node of procedure f at the time t. For brevity, the graph for
sed-4.0.8 is shown only up to 100,000 iterations among more than 3,000,000 total
iterations. From the results, we first observe that similar patterns are repeated
and each pattern contains almost all procedures in the program. And we find
that there are much more repetitions in the case of a large program (sed-4.0.8,
26,807 LOC) than a small one (spell-1.0, 2,213 LOC): more than 150 repeated
iterations were required to analyze sed-4.0.8 whereas spell-1.0 needed about 30
repetitions.

3 Our Algorithmic Mitigation Technique

In this section, we describe our algorithmic technique. We first describe the
traditional call-strings-based analysis algorithm (section 3.1). Then we present
our algorithmic extension of the classical algorithm (section 3.2).

We assume that a program is represented by a supergraph [11]. A supergraph
consists of control flow graphs of procedures with interprocedural edges connect-
ing each call-site to its callee. Each node n ∈ Node in the graph has one of the
five types :

entryf | exitf | callg,r
f | rtnc

f | cmdf

20 H. Oh

The subscript f of each node represents the procedure name enclosing the node.
entryf and exitf are entry and exit nodes of procedure f . A call-site in a program
is represented by a call node and its corresponding return node. A call node
callg,r

f indicates that it invokes a procedure g and its corresponding return node
is r. We assume that function pointers are resolved (before the analysis). Node
rtnc

f represents a return node in f whose corresponding call node is c. Node cmdf

represents a general command statement. Edges are assembled by a function,
succof, which maps each node to its successors. CallNode is the set of call nodes
in a program.

3.1 Normalk: A Normal Call-Strings-Based Analysis Algorithm

Call-strings are sequences of call nodes. To make them finite, we only con-
sider call-strings of length at most k for some fixed integer k ≥ 0. We write
CallNode≤k let= Δ for the set of call-strings of length ≤ k. We write [c1, c2, · · · , ci]
for a call-string of call sequence c1, c2, · · · , ci. Given a call-string δ and a call
node c, [δ, c] denotes a call-string obtained by appending c to δ. In the case of
context-insensitive analysis (k = 0), we use Δ = {ε}, where the empty call-string
ε means no context-information.

Fig 3.(a) shows the worklist-based fixpoint iteration algorithm that performs
call-strings(Δ)-based context-sensitive (or insensitive, when k = 0) analysis. The
algorithm computes a table T ∈ Node → State which associates each node with
its input state State = Δ → Mem, where Mem denotes abstract memory, which is
a map from program variables to abstract values. That is, call-strings are tagged
to the abstract memories and are used to distinguish the memories propagated
along different interprocedural paths, to a limited extent (the last k call-sites).
The worklist W consists of node and call-string pairs. The algorithm chooses a
work-item (n, δ) ∈ Node × Δ from the worklist and evaluates the node n with
the flow function F̂ . Next work-items to be inserted into the worklist are defined
by the function N ∈ Node × Δ → 2Node×Δ :

N (n, δ) =

⎧
⎨

⎩

{(r, δ′) | δ = �δ′, callg,r
f �k ∧ δ′ ∈ dom(T (callg,r

f))} if n = exitg
{(entryg, �δ, n�k))} if n = callg,r

f

{(n′, δ) | n′ ∈ succof(n)} otherwise

where dom(f) denotes the domain of map f and �δ, c�k denotes the call-string
[δ, c] but possibly truncated so as to keep at most the last k call-sites.

The algorithm can follow spurious return paths if the input program’s nested
call-depth is larger than the k. The mapping δ′ to �δ′, callg,r

f �k is not one-to-one
and N possibly returns many work-items at an exit node.

We call the algorithm Normalk(k = 0, 1, 2, . . .). Normal0 performs context-
insensitive analysis,Normal1 performs context-sensitive analysis that distinguishes
the last 1 call-site, and so on.

3.2 Normalk/RSS: Our Algorithm

Definition 1. When a procedure g is called from a call node callg,r
f under con-

text δ, we say that (callg,r
f , δ) is the call-context for that procedure call. Since

Large Spurious Cycle in Global Static Analyses 21

each call node callg,r
f has a unique return node, we interchangeably write (r, δ)

and (callg,r
f , δ) for the same call-context.

Our return-site-sensitive (RSS) technique is simple. When calling a procedure
at a call-site, the call-context for that call is remembered until the procedure re-
turns. The bookkeeping cost is limited to only one memory entry per procedure.
This is possible by the following strategies:

1. Single return: Whenever the analysis of a procedure g is started from
a call node callg,r

f in f under call-string δ, the algorithm remembers its
call-context (r, δ), consisting of the corresponding return node r and the
call-string δ. And upon finishing analyzing g’s body, after evaluating exitg,
the algorithm inserts only the remembered return node and its call-string
(r, δ) into the worklist. Multiple returns are avoided. For correctness, this
single return should be allowed only when other call nodes that call g are
not analyzed until the analysis of g from (callg,r

f , δ) completes.
2. One call per procedure, exclusively: We implement the single return

policy by using one memory entry per procedure to remember the call-
context. This is possible if we can analyze each called procedure exclusively
for its one particular call-context. If a procedure is being analyzed from a call
node c with a call-string δ, processing all the other calls that call the same
procedure should wait until the analysis of the procedure from (c, δ) is com-
pletely finished. This one-exclusive-call-per-procedure policy is enforced by
not selecting from the worklist other call nodes that (directly or transitively)
call the procedures that are currently being analyzed.

3. Recursion handling: The algorithm gives up the single return policy for re-
cursive procedures. This is because we cannot finish analyzing recursive pro-
cedure body without considering other calls (recursive calls) in it. Recursive
procedures are handled in the same way as the normal worklist algorithm.

The algorithm does not follow spurious return paths regardless of the program’s
nested call-depth. While Normalk starts losing its power when a call chain’s
length is larger than k, Normalk/RSS does not. The following example shows
this difference between Normalk and Normalk/RSS.

Example 1. Consider a program that has the following call-chain (where f1
c1,c2→

f2 denotes that f1 calls f2 at call-sites c1 and c2) and suppose k = 1:

f1
c1,c2→ f2

c3,c4→ f3

– Normal1: The analysis results for f2 are distinguished by [c1] and [c2] hence
no butterfly cycle happens between f1 and f2. Now, when f3 is called from
f2 at c3, we have two call-contexts (c3, [c1]) and (c3, [c2]) but analyzing f3

proceeds with context [c3] (because k = 1). That is, Normalk forgets the
call-context for procedure f3. Thus the result of analyzing f3 must flow back
to all call-contexts with return site c3, i.e., to both the call-contexts (c3, [c1])
and (c3, [c2]).

22 H. Oh

– Normal1/RSS: The results for f2 and f3 are distinguished in the same way
as Normal1. But, Normal1/RSS additionally remembers the call-contexts for
every procedure call. If f3 was called from c3 under context [c1], our algo-
rithmic technique forces Normalk to remember the call-context (c3, [c1]) for
that procedure call. And finishing analyzing f3’s body, f3 returns only to
the remembered call-context (c3, [c1]). This is possible by the one-exclusive-
call-per-procedure policy.

We ensure the one-exclusive-call-per-procedure policy by prioritizing a callee
over call-sites that (directly or transitively) invoke the callee. The algorithm
always analyzes the nodes of the callee g first prior to any other call nodes that
invoke g: before selecting a work-item as a next job, we exclude from the worklist
every call node callg,r

f to g if the worklist contains any node of procedure h that
can be reached from g along some call-chain g → · · · → h, including the case of
g = h. After excluding such call nodes, the algorithm chooses a work-item in the
same way as a normal worklist algorithm.

Example 2. Consider a worklist {(callg,r1
f ,δ1),(callh,r2

g , δ2), (nh, δ3), (calli,r4
h , δ4)}

and assume there is a path f → g → h in the call graph. When choosing a work-
item from the worklist, our algorithm first excludes all the call nodes that invoke
procedures now being analyzed: callh,r2

g is excluded because h’s node nh is in the
worklist. Similarly, callg,r1

f is excluded because there is a call-chain g → h in the
call graph and h’s node nh exists. So, the algorithm chooses a work-item from
{(nh, δ3), (calli,r4

h , δ4)}. The excluded work-items (callg,r1
f , δ1) and (callh,r2

g , δ2)
will not be selected unless there are no nodes of h in the worklist.

Fig 3(b) shows our algorithmic technique that is applied to the normal worklist
algorithm of Fig 3(a). To transform Normalk into Normalk/RSS, only shaded
lines are inserted; other parts remain the same. ReturnSite is a map to record
a single return site information (return node and context pair) per procedure.
Lines 15-16 are for remembering a single return when encountering a call-site.
The algorithm checks if the current node is a call-node and its target procedure is
non-recursive (the recursive predicate decides whether the procedure is recursive
or not), and if so, it remembers its single return-site information for the callee.
Lines 17-22 handle procedure returns. If the current node is an exit of a non-
recursive procedure, only the remembered return for that procedure is used as
a next work-item, instead of all possible next (successor, context) pairs (line
23). Prioritizing callee over call nodes is implemented by delaying call nodes to
procedures now being analyzed. To do this, in line 12-13, the algorithm excludes
the call nodes {(callg, ,) ∈ W | (nh,) ∈ W ∧ reach(g, h) ∧ ¬recursive(g)} that
invoke non-recursive procedures whose nodes are already contained in the current
worklist. reach(g, h) is true if there is a path in the call graph from g to h.

Correctness and Precision. One noticeable thing is that the result of our
algorithm is not a fixpoint of the given flow equation system, but still a sound
approximation of the program semantics. Since the algorithm prunes some com-
putation steps during worklist algorithm (at exit nodes of non-recursive proce-
dures), the result of the algorithm may not be a fixpoint of the original equation

Large Spurious Cycle in Global Static Analyses 23

(01) : δ ∈ Context = Δ (01) : δ ∈ Context = Δ
(02) : w ∈ Work = Node × Δ (02) : w ∈ Work = Node × Δ

(03) : W ∈ Worklist = 2Work (03) : W ∈ Worklist = 2Work

(04) : N ∈ Node × Δ → 2Node×Δ (04) : N ∈ Node × Δ → 2Node×Δ

(05) : State = Δ → Mem (05) : State = Δ → Mem
(06) : T ∈ Table = Node → State (06) : T ∈ Table = Node → State

(07) : F̂ ∈ Node → Mem → Mem (07) : F̂ ∈ Node → Mem → Mem

(08) : ReturnSite ∈ ProcName → Work

(09) : FixpointIterate (W, T) = (09) : FixpointIterate (W, T) =

(10) : ReturnSite := ∅
(11) : repeat (11) : repeat

(12) : S := {(callg, ,) ∈ W | (nh,) ∈ W ∧ reach(g, h) ∧ ¬recursive(g)}
(13) : (n, δ) := choose(W) (13) : (n, δ) := choose(W \ S)

(14) : m := F̂ n (T (n)(δ)) (14) : m := F̂ n (T (n)(δ))

(15) : if n = callg,r
f ∧ ¬recursive(g) then

(16) : ReturnSite(g) := (r, δ)

(17) : if n = exitg ∧ ¬recursive(g) then

(18) : (r, δr) := ReturnSite(g)

(19) : if m �� T (r)(δr)

(20) : W := W ∪ {(r, δr)}
(21) : T (r)(δr) := T (r)(δr) 	 m

(22) : else

(23) : for all (n′, δ′) ∈ N (n, δ) do (23) : for all (n′, δ′) ∈ N (n, δ) do
(24) : if m �� T (n′)(δ′) (24) : if m �� T (n′)(δ′)
(25) : W := W ∪ {(n′, δ′)} (25) : W := W ∪ {(n′, δ′)}
(26) : T (n′)(δ′) := T (n′)(δ′) 	 m (26) : T (n′)(δ′) := T (n′)(δ′) 	 m
(27) : until W = ∅ (27) : until W = ∅

(a) a normal worklist algorithm Normalk (b) our algorithm Normalk/RSS

Fig. 3. A normal context-sensitive worklist algorithm Normalk (left-hand side) and its
RSS modification Normalk/RSS (right-hand side). These two algorithms are the same
except for shaded regions. For brevity, we omit the usual definition of F̂ , which updates
the worklist in addition to computing the flow equation’s body.

system. However, because the algorithm prunes only spurious returns that defi-
nitely do not happen in the real executions of the program, our algorithm does
not miss any real executions.

Normalk/RSS is always at least as precise as Normalk. Because our technique
prunes some (worklist-level) computations that occur along invalid return paths,
it improves the precision. The actual precision of Normalk/RSS varies depending
on the worklist order, but is no worse than that of Normalk.

Example 3. Consider the program in Fig 1 again, and suppose the current work-
list is {1, 5}. When analyzing the program with Normal0, the fixpoint-solving
follows both spurious return paths, regardless of the worklist order,

1 → 2 → 3 → 6 (1)
5 → 2 → 3 → 4 (2)

because of multiple returns from node 3. When analyzing with Normal0/RSS,
there are two possibilities, depending on the worklist order:

1. When Normal0/RSS selects node 1 first: Then the fixpoint iteration se-
quence may be 1; 2; 3; 4; 5; 2; 3; 6. This sequence involves the spurious path (1)

24 H. Oh

(because the second visit to node 2 uses the information from node 1 as well
as from node 5), but not (2). Normal0/RSS is more precise than Normal0.

2. When Normal0/RSS selects node 5 first: Then the fixpoint iteration sequence
may be 5; 2; 3; 6; 1; 2; 3; 4; 5; 2; 3; 6. This computation involves both spurious
paths (1) and (2). With this iteration order, Normal0 and Normal0/RSS have
the same precision.

4 Experiments

We implemented our algorithm inside a realistic C analyzer [5,6]. Experiments
with open-source programs show that Normalk/RSS for any k is very likely faster
than Normalk, and that even Normalk+1/RSS can be faster than Normalk.

4.1 Setting Up

Normalk is our underlying worklist algorithm, on top of which our industrialized
static analyzer [5,6] for C is installed. The analyzer is an interval-domain-based
abstract interpreter. The analyzer performs by default flow-sensitive and call-
string-based context-sensitive global analysis on the supergraph of the input pro-
grams: it computes T = Node → State where State = Δ → Mem. Mem denotes
abstract memory Mem = Addr → Val where Addr denotes abstract locations
that are either program variables or allocation sites, and Val denotes abstract
values including Ẑ (interval domain), 2Addr (addresses), and 2AllocSite×Ẑ×Ẑ (ar-
ray block, consisting of base address, offset, and size [6]).

We measured the net effects of avoiding spurious interprocedural cycles. Since
our algorithmic technique changes the existing worklist order, performance dif-
ferences between Normalk and Normalk/RSS could be attributed not only to
avoiding spurious cycles but also to the changed worklist order. In order to mea-
sure the net effects of avoiding spurious cycles, we applied the same worklist
order to both Normalk and Normalk/RSS. The order (between nodes) that we
used is a reverse topological order between procedures on the call graph: a node
n of a procedure f precedes a node m of a procedure g if f precedes g in the
reverse topological order in the call graph. If f and g are the same procedure,
the order between the nodes are defined by the weak topological order [3] on the
control flow graph of the procedure. Note that this ordering itself contains the
“prioritize callees over call-sites” feature and we don’t explicitly need the delay-
ing call technique (lines 12-13 in Fig 3.(b)) in Normalk/RSS. Hence the worklist
order for Normalk and Normalk/RSS are the same.4

We have analyzed 11 open-source software packages. Table 2 shows our bench-
mark programs as well as their raw analysis results. All experiments were done
on a Linux 2.6 system running on a Pentium4 3.2GHz box with 4 GB of main
memory.
4 In fact, the order described here is the one our analyzer uses by default, which

consistently shows better performance than naive worklist management scheme
(BFS/DFS) or simple “wait-at-join” techniques (e.g., [6]).

Large Spurious Cycle in Global Static Analyses 25

Table 2. Benchmark programs and their raw analysis results. Lines of code (LOC) are
given before preprocessing. The number of nodes in the supergraph(#nodes) is given
after preprocessing. k denotes the size of call-strings used for the analysis. Entries with
∞ means missing data because of our analysis running out of memory.

Program LOC #nodes k-call- #iterations time
strings Normal Normal/RSS Normal Normal/RSS

spell-1.0 2,213 782 0 33,864 5,800 60.98 8.49
1 31,933 10,109 55.02 13.35
2 57,083 15,226 102.28 19.04

barcode-0.96 4,460 2,634 0 22,040 19,556 93.22 84.44
1 33,808 30,311 144.37 134.57
2 40,176 36,058 183.49 169.08

httptunnel-3.3 6,174 2,757 0 442,159 48,292 2020.10 191.53
1 267,291 116,666 1525.26 502.59
2 609,623 251,575 5983.27 1234.75

gzip-1.2.4a 7,327 6,271 0 653,063 88,359 4601.23 621.52
1 991,135 165,892 10281.94 1217.58
2 1,174,632 150,391 18263.58 1116.25

jwhois-3.0.1 9,344 5,147 0 417,529 134,389 4284.21 1273.49
1 272,377 138,077 2445.56 1222.07
2 594,090 180,080 8448.36 1631.07

parser 10,900 9,298 0 3,452,248 230,309 61316.91 3270.40
1 ∞ ∞ ∞ ∞

bc-1.06 13,093 4,924 0 1,964,396 412,549 23515.27 3644.13
1 3,038,986 1,477,120 44859.16 12557.88
2 ∞ ∞ ∞ ∞

less-290 18,449 7,754 0 3,149,284 1,420,432 46274.67 20196.69
1 ∞ ∞ ∞ ∞

twolf 19,700 14,610 0 3,028,814 139,082 33293.96 1395.32
1 ∞ ∞ ∞ ∞

tar-1.13 20,258 10,800 0 4,748,749 700,474 75013.88 9973.40
1 ∞ ∞ ∞ ∞

make-3.76.1 27,304 11,061 0 4,613,382 2,511,582 88221.06 44853.49
1 ∞ ∞ ∞ ∞

4.2 Results

We use two performance measures: (1) #iterations is the total number of itera-
tions during the worklist algorithm. The number directly indicates the amount
of computation; (2) time is the CPU time spent during the analysis.

Fig 4(a) compares the analysis time between Normalk/RSS and Normalk for
k = 0, 1, 2. In this comparison, Normalk/RSS reduces the analysis time of Normalk
by 7%-96%.

– When k = 0 (context-insensitive) : Normal0/RSS has reduced the analysis
time by, on average, about 74% against Normal0. For most programs, the
analysis time has been reduced by more than 50%. There is one exception:
barcode. The analysis time has been reduced by 9%. This is because barcode
has unusual call structures: it does not call a procedure many times, but calls
many different procedures one by one. So, the program contains few butterfly
cycles.

26 H. Oh

– When k = 1: Normal1/RSS has reduced the analysis time by, on average,
about 60% against Normal1. Compared to the context-insensitive case, for all
programs, cost reduction ratios have been slightly decreased. This is mainly
because, in our analysis, Normal0 costs more than Normal1 for most programs
(spell, httptunnel, jwhois). For httptunnel, in Table 2, the analysis time
(2020.10 s) for k = 1 is less than the time (1525.26 s) for k = 0. This means
that performance problems by butterfly cycles is much more severe when
k = 0 than that of k = 1, because by increasing context-sensitivity some
spurious paths can be removed.

– When k = 2: Normal2/RSS has reduced the analysis time by, on average, 69%
against Normal2. Compared to the case of k = 1, the cost reduction ratio has
been slightly increased for most programs. In the analysis of Normal2, since
the equation system is much larger than that of Normal1, our conjecture is
that the size of butterfly cycles is likely to get larger. Since larger butterfly
cycles causes more serious problems (Section 2), our RSS algorithm is likely
to greater reduce useless computation.

Fig 4(b) compares the performance of Normalk+1/RSS against Normalk for k =
0, 1. The result shows that, for all programs except barcode, Normalk+1/RSS is
likely faster than Normalk. Since Normalk+1/RSS can be even faster than Normalk,
if memory cost permits, we can consider using Normalk+1/RSS instead of
Normalk.

Table 3 compares the precision between Normal0 and Normal0/RSS. In order
to measure the increased precision, we first joined all the memories associated
with each program point (Node). Then we counted the number of constant in-
tervals (#const, e.g., [1, 1]), finite intervals (#finite, e.g., [1, 5]), intervals with
one infinity (#open, e.g., [−1, +∞) or (−∞, 1]), and intervals with two infinity
(#top, (−∞, +∞)) from interval values (Ẑ) and array blocks (2AllocSite×Ẑ×Ẑ)
contained in the joined memory. The constant interval and top interval indi-
cate the most precise and imprecise values, respectively. The results show that
Normal0/RSS is more precise (spell, barcode, httptunnel, gzip) than Normal0
or the precision is the same (jwhois).

Table 3. Comparison of precision between Normal0 and Normal0/RSS

Program Analysis #const #finite #open #top
spell-1.0 Normal0 345 88 33 143

Normal0/RSS 345 89 35 140
barcode-0.96 Normal0 2136 588 240 527

Normal0/RSS 2136 589 240 526
httptunnel-3.3 Normal0 1337 342 120 481

Normal0/RSS 1345 342 120 473
gzip-1.2.4a Normal0 1995 714 255 1214

Normal0/RSS 1995 716 255 1212
jwhois-3.0.1 Normal0 2740 415 961 1036

Normal0/RSS 2740 415 961 1036

Large Spurious Cycle in Global Static Analyses 27

 0

 25

 50

 75

 100

spell
barcode

httptunnel

gzip
jwhois

parser

bc less
twolf

m
ake

tar
AVERAGE

Normal0 vs. Normal0/RSS Normal

100 100 100 100 100 100 100 100 100 100 100 100

RSS

14

91

9
14

30

5

15

44

4

51

13

26

 0

 25

 50

 75

 100

spell
barcode

httptunnel

gzip
jwhois

bc AVERAGE

Normal1 vs. Normal1/RSS

100 100 100 100 100 100 100

24

93

33

12

50

28

40

 0

 25

 50

 75

 100

spell
barcode

httptunnel

gzip
jwhois

AVERAGE

Normal2 vs. Normal2/RSS

100 100 100 100 100 100

19

92

21

6

19

31

(a) Comparison of #iterations between Normalk and Normalk/RSS, for k = 0, 1, 2.

 0

 25

 50

 75

 100

 125

 150

spell
barcode

httptunnel

gzip
jwhois

bc AVERAGE

Normal0 vs. Normal1/RSS

100 100 100 100 100 100 100

22

143

25 26 29

53 50

 0

 25

 50

 75

 100

 125

spell
barcode

httptunnel

gzip
jwhois

AVERAGE

Normal1 vs. Normal2/RSS Normal

100 100 100 100 100 100

RSS

35

117

81

11

67
62

(b) Comparison of #iterations between Normalk and Normalk+1/RSS, for k = 0, 1.

Fig. 4. Net effects of avoiding spurious cycles

5 Conclusion

We have presented a simple algorithmic technique to alleviate substantial ineffi-
ciency in global static analysis caused by large spurious interprocedural cycles.
Such cycles are identified as a major reason for the folklore problem in static anal-
ysis that less precise analyses sometimes are slower. Although this inefficiency

28 H. Oh

might not come to the fore when analyzing small programs, globally analyz-
ing medium or large programs makes it outstanding. The proposed algorithmic
technique reduces the analysis time by 7%-96% for open-source benchmarks.

Though tuning the precision of static analysis can in principle be controlled
solely by redesigning the underlying abstract semantics, our algorithmic tech-
nique is a simple and orthogonal leverage to effectively shift the analysis cost/
precision balance for the better. The technique’s correctness is obvious enough
to avoid the burden of a safety proof that would be needed if we newly designed
the abstract semantics.

Acknowledgements. I am grateful to Wontae Choi, Yungbum Jung, Will
Klieber, Soonho Kong, and Daejun Park for their helpful comments and sug-
gestions. I would like to especially thank Deokhwan Kim and Kwangkeun Yi for
their very kindhearted help in writing this paper. I am also thankful to anony-
mous referees for helpful comments.

This work was supported by the Engineering Research Center of Excellence
Program of Korea Ministry of Education, Science and Technology(MEST) / Ko-
rea Science and Engineering Foundation(KOSEF) (R11-2008-007-01002-0) and
the Brain Korea 21 Project, School of Electrical Engineering and Computer
Science, Seoul National University in 2009.

References

1. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 binary executables.
In: Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg
(2004)

2. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Proceedings of
the ACM SIGPLAN-SIGACT Conference on Programming Language Design and
Implementation, pp. 196–207 (2003)

3. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Proceed-
ings of the International Conference on Formal Methods in Programming and their
Applications, pp. 128–141 (1993)

4. Chambers, C., Dean, J., Grove, D.: Frameworks for intra- and interprocedural
dataflow analysis. Technical report, Department of Computer Science and Engi-
neering, University of Washington (1996)

5. Jhee, Y., Jin, M., Jung, Y., Kim, D., Kong, S., Lee, H., Oh, H., Park, D., Yi, K.:
Abstract interpretation + impure catalysts: Our Sparrow experience. Presentation
at the Workshop of the 30 Years of Abstract Interpretation, San Francisco (January
2008), http://www.ropas.snu.ac.kr/~kwang/paper/30yai-08.pdf

6. Jung, Y., Kim, J., Shin, J., Yi, K.: Taming false alarms from a domain-unaware C
analyzer by a bayesian statistical post analysis. In: Hankin, C., Siveroni, I. (eds.)
SAS 2005. LNCS, vol. 3672, pp. 203–217. Springer, Heidelberg (2005)

7. Karkare, B., Khedker, U.P.: An improved bound for call strings based interproce-
dural analysis of bit vector frameworks. ACM Trans. on Programming Languages
and Systems 29(6), 38 (2007)

http://www.ropas.snu.ac.kr/~kwang/paper/30yai-08.pdf

Large Spurious Cycle in Global Static Analyses 29

8. Khedker, U.P., Karkare, B.: Efficiency, precision, simplicity, and generality in in-
terprocedural data flow analysis: Resurrecting the classical call strings method. In:
Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 213–228. Springer, Heidelberg
(2008)

9. Martin, F.: PAG - an efficient program analyzer generator. International Journal
on Software Tools for Technology Transfer 2(1), 46–67 (1998)

10. Martin, F.: Experimental comparison of call string and functional approaches
to interprocedural analysis. In: Jähnichen, S. (ed.) CC 1999. LNCS, vol. 1575,
pp. 63–75. Springer, Heidelberg (1999)

11. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of The ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 49–61 (1995)

12. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans. on
Programming Languages and System 29(5), 26–51 (2007)

13. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. Theoretical Computer Sicence 167(1-2),
131–170 (1996)

14. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications, ch. 7. Prentice-Hall, Englewood
Cliffs (1981)

15. Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analysis for
java. In: Proceedings of the ACM SIGPLAN-SIGACT Conference on Programming
Language Design and Implementation, pp. 387–400 (2006)

16. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis us-
ing binary decision diagrams. In: Proceedings of the ACM SIGPLAN-SIGACT
Conference on Programming Language Design and Implementation, pp. 131–144
(2004)

	Large Spurious Cycle in Global Static Analyses and Its Algorithmic Mitigation
	Introduction
	Problem: Large Performance Degradation By Inevitable, Spurious Interprocedural Cycles
	Solution: An Algorithmic Mitigation without Redesigning Abstract Semantics
	Contributions
	Related Work

	Performance Problems Due to Large Spurious Cycles
	Our Algorithmic Mitigation Technique
	Normal$_k$: A Normal Call-Strings-Based Analysis Algorithm
	Normal$_k$/RSS: Our Algorithm

	Experiments
	Setting Up
	Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

