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Recap

The following are all equivalent:

L is a regular language.

There is a DFA D whose language is L.

There is an NFA N whose language is L.

There is a regular expression R whose language is L.
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Some Fundamental Questions

Are all languages regular?
I No, e.g., L = {anbn | n ≥ 0} is not regular.

How to prove that a language is non-regular? Two methods:
1 Direct proof by Pigeonhole principle.
2 By using the pumping lemma.
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Intuition

Regular languages can be recognized with finite memory.

Non-regular languages cannot be recognized with finite memory.
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Example 1: L = {anbn | n ≥ 0}
The intuition behind the proof:

Suppose there is a DFA D that accepts L.

Then, when D is run on any two of the strings ε, a, aa, aaa, . . . , D
must end in different states.

I Assume an and am (n 6= m) lead to the same state.
I Then anbn and ambn must end up in the same state.
I This is a contradiction because either anbn is rejected or ambn is

accepted.

This is impossible because there are only finitely many states. We
cannot put all these strings into different states.
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Example 1: L = {anbn | n ≥ 0}
Proof with Pigeonhole principle ( If you put more than n pigeons into n holes, then some hole
has more than one pigeon. ):

Proof by contradiction.

Assume L is regular.

Then there is a DFA M = (Q,Σ, δ, q0, F ) recognizing L.

Define:

I Pigeons = {an | n ≥ 0} = {a, aa, aaa, . . .}
I Holes = states in Q

Put pigeon an into hole δ∗(q0, an)
I i.e., the hole corresponding to the state reached by input an

We have |Q| holes but more than |Q| pigeons (actually, infinitely many).

So, two pigeons must be put in the same hole, say ai and aj , where i 6= j.
I That is, ai and aj lead to the same state.

Then, since M accepts aibi, it also accepts ajbi, which is a contradiction.

Thus, the original assumption that L is regular is false,

That is, L is non-regular.
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Example 2: L = {ww | w ∈ {0, 1}∗} is non-regular

Show by contradiction, using Pigeonhole principle.

Assume L is regular, so there is a DFA M = (Q,Σ, δ, q0, F )
recognizing L.

Define:
I Pigeons = {0i1 | i ≥ 0} = {1, 01, 001, . . .}
I Holes = states in Q

Put pigeon string 0i1 into hole δ∗(q0, 0
i1)

By Pigeonhole principle, two pigeons share a hole, say 0i1 and 0j1,
where i 6= j.

So 0i1 and 0j1 lead to the same state.

M accepts 0i10i1, so does 0j10i1, which is a contradiction.
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The Pumping Lemma

Theorem (Pumping Lemma)

For any regular language L there exists an integer n, such that for all
x ∈ L with |x| ≥ n, there exist u, v, w ∈ Σ∗, such that

1 x = uvw

2 |uv| ≤ n
3 |v| ≥ 1

4 for all i ≥ 0, uviw ∈ L.
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Proof of Pumping Lemma

Let M be a DFA for L. Suppose M has n states.

Take x ∈ L with |x| ≥ n, let m = |x|:

x = a1a2 . . . am

Let pi = δ∗(q0, a1a2 . . . ai). Note p0 = q0 and pm is a final state.

Consider the first n+ 1 states: p0p1 . . . pn.

By Pigeonhole principle, two pi and pj with 0 ≤ i < j ≤ n share a state,
i.e., pi = pj .

Break x = uvw:

I u = a1a2 . . . ai

I v = ai+1ai+2 . . . aj

I w = aj+1aj+2 . . . am

Note that δ∗(p0, u) = pi, δ
∗(pi, v) = pi, and δ∗(pi, w) = pm.

Thus, δ∗(p0, uw) = pm, δ∗(p0, uvw) = pm, δ∗(p0, uv
2w) = pm,

and so on.
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Using Pumping Lemma to show non-regularity

If L is regular, L satisfies pumping lemma?

If L satisfies pumping lemma, L is regular?

If L does not satisfy pumping lemma, then L is non-regular?

Pumping lemma can be used only for proving languages not to be regular.
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Example 1

Prove that L = {0i1i | i ≥ 0} is not regular.

Show that pumping lemma (P.L.) does not hold.

If L is regular, then by P.L. there exists n such that ...

Now let x = 0n1n

x ∈ L and |x| ≥ n, so by P.L. there exist u, v, w such that (1)–(4)
hold.

We show that for all u, v, w (1)–(4) do not all hold.

If (1), (2), (3) hold then x = 0n1n = uvw with |uv| ≤ n and
|v| ≥ 1.

So, u = 0s, v = 0t, w = 0p1n with

s+ t ≤ n, t ≥ 1, p ≥ 0, s+ t+ p = n.

Then (4) fails for i = 0:

uv0w = uw = 0s0p1n = 0s+p1n 6∈ L, since s+ p 6= n
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Example 2

Prove that L = {wwR | w ∈ {a, b}∗} is not regular.

Show that pumping lemma (P.L.) does not hold.

If L is regular, then by P.L. there exists n such that ...

Now let x = anbnbnan

x ∈ L and |x| ≥ n, so by P.L. there exist u, v, w such that (1)–(4)
hold.

We show that for all u, v, w (1)–(4) do not all hold.

If (1), (2), (3) hold then x = anbnbnan = uvw with |uv| ≤ n
and |v| ≥ 1.

So, u = as, v = at, w = apbnbnan with

s+ t ≤ n, t ≥ 1, p ≥ 0, s+ t+ p = n.

Then (4) fails for i = 0:

uv0w = uw = asapbnbnan = as+pbnbnan 6∈ L, since s+ p 6= n
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Example 3

Prove that L = {w ∈ {a, b}∗ | na(w) < nb(w)} is not regular.

Show that pumping lemma (P.L.) does not hold.

If L is regular, then by P.L. there exists n such that ...

Now let x = anbn+1

x ∈ L and |x| ≥ n, so by P.L. there exist u, v, w such that (1)–(4)
hold.

We show that for all u, v, w (1)–(4) do not all hold.

If (1), (2), (3) hold then x = anbn+1 = uvw with |uv| ≤ n and
|v| ≥ 1.

So, u = as, v = at, w = apbn+1 with

s+ t ≤ n, t ≥ 1, p ≥ 0, s+ t+ p = n.

Then (4) fails for i = 2:

uv2w = asa2tapbn+1 = as+2t+pbn+1 6∈ L,

since s+ 2t+ p ≥ n+ 1.
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Example 4

Prove that L = {an | n is a perfect square} is not regular.

Show that pumping lemma (P.L.) does not hold.

If L is regular, then by P.L. there exists n such that ...

Now let x = an
2

x ∈ L and |x| ≥ n, so by P.L. there exist u, v, w such that (1)–(4)
hold.

We show that for all u, v, w (1)–(4) do not all hold.

If (1), (2), (3) hold then x = an
2

= uvw with |uv| ≤ n and
|v| ≥ 1.

Then, clearly v = ak with 1 ≤ k ≤ n.

Then (4) fails for i = 0:

uv0w = an
2−k 6∈ L, since n2 − k > (n− 1)2.
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Example 5

Prove that L = {anbkcn+k | n ≥ 0 ∧ k ≥ 0} is not regular.

It is not difficult to apply the pumping lemma directly, but it is even
easier to use closure under homomorphism. Take

h(a) = a, h(b) = a, h(c) = c,

then

h(L) = {an+kcn+k | n+ k ≥ 0} = {aibi | i ≥ 0}.

We know this language is not regular.

Also, we know that if a language L1 is regular, then h(L1) is regular.
Taking its contraposition, we conclude that L is not regular.
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cf) The converse of pumping lemma is not true

L = {cmanbn | m ≥ 1, n ≥ 1}

L satisfies the pumping lemma.
I For any x ∈ L of length ≥ 1, we can take u = ε,
v = the first letter of x (c), and w = the rest of x.

However, L is not regular.
I We can prove this using a general version of pumping lemma: For any

regular language L, there exists n ≥ 1 such that for every string
uvw ∈ L with |w| ≥ p such that

F uwv = uxyzv
F |xy| ≤ n
F |y| ≥ 1
F For all i ≥ 0, uxyizv ∈ L.

Still, the converse of the general lemma is not true.
I Languages that satisfy the lemma can still be non-regular.
I For a necessary and sufficient condition to be regular, refer to

Myhill-Nerode theorem.
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