COSE215: Theory of Computation

Lecture 6 — Regular Expressions and Finite Automata

Hakjoo Oh 2018 Spring

Equivalence between Regular Expressions and Finite Automata

Theorem (From RE to FA)

Every language defined by a regular expression is also defined by a finite automaton.

Theorem (From FA to RE)

Every language defined by some finite automata is also defined by a regular expression.

Conversion From Regular Expression to Finite Automata

Given a regular expression R, we show that L(R) is accepted by an ϵ -NFA such that

- it has exactly one accepting state,
- no arcs into the initial state, and
- no arcs out of the accepting state.

Conversion from Regular Expression to Finite Automata

The conversion is by structural induction on ${\it R}$. Base cases:

- \bullet $R = \epsilon$:
- \bullet $R = \emptyset$:
- $R = a \in \Sigma$:

From Regular Expression to Finite Automata

Inductive cases:

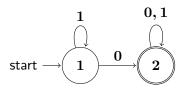
- $R = R_1 + R_2$:
- $R = R_1 R_2$:
- $R = R_1^*$:

Examples

- $0 \cdot 1^*$:
- $(0+1) \cdot 0 \cdot 1$:
- $(0+1)^* \cdot 1 \cdot (0+1)$:

From Automata to Regular Expression

Consider DFA D whose states are $\{1,2,\ldots,n\}$, e.g.,



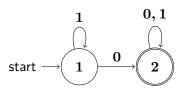
- The idea is to progressively accept more paths in the transition graph.
- Let $R_{ij}^{(k)}$ be the name of a regular expression whose language is the set of strings w such that w is the label of a path from state i to state j in D, and that path has no intermediate node whose number is greater than k.

From Automata to Regular Expressions

When k = 0:

- ① When $i \neq j$, consider every arc $i \stackrel{a}{\rightarrow} j$ in D.
 - If there is no such arc, then $R_{ij}^{(0)}=\emptyset$.
 - ② If there is exactly one such arc, then $R_{ij}^{(0)}=a.$
 - $oldsymbol{0}$ If there are multiple arcs $i\stackrel{a_1}{ o} j,\ i\stackrel{a_2}{ o} j,\ \ldots,\ i\stackrel{a_k}{ o} j,$ then $R_{ij}^{(0)}=a_1+a_2+\cdots+a_k.$
- ② When i=j, consider every arc $i\stackrel{a}{
 ightarrow}i$:
 - **1** If there is no such arc, then $R_{ij}^{(0)} = \epsilon$.
 - **9** If there is exactly one such arc, then $R_{ij}^{(0)} = \epsilon + a$.
 - $\textbf{ If there are multiple arcs } i \stackrel{a_1}{\to} i, \ i \stackrel{a_2}{\to} i, \ \dots, \ i \stackrel{a_k}{\to} i, \ \text{then} \\ R_{ij}^{(0)} = \epsilon + a_1 + a_2 + \dots + a_k.$

Example



From Automata to Regular Expressions

When k > 0:

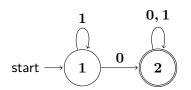
- When the path does not use state k at all. In this case, the label of the path is in the language of $R_{ij}^{(k-1)}$.
- ② When the path goes through state k at least once.

$$R_{ik}^{(k-1)}(R_{kk}^{(k-1)})^*R_{kj}^{(k-1)}$$

By combining the two cases, we have the expression:

$$R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$$

Example



$$R_{11}^{(1)} = R_{12}^{(1)} = R_{21}^{(1)} = R_{22}^{(1)} = R_{2$$

$$R_{11}^{(2)} = R_{12}^{(2)} = R_{21}^{(2)} = R_{22}^{(2)} =$$