COSE215: Theory of Computation

Lecture 5 - Regular Expressions

Hakjoo Oh
2018 Spring

Motivation: Searching for Patterns

```
theoretical
computer
science
formal
language
patterns
regular
expression
sequence
```

- Find all words that contain at least one consecutive t's: \$ cat textfile | grep "t\+"
- Find all words that contain at least two e's:
\$ cat textfile | grep "e[a-z]*e"

Regular expression

A regular expression denotes a language.
E.g., $(\boldsymbol{a}+(\boldsymbol{b} \cdot \boldsymbol{c}))^{*}$ stands for:
$\{\epsilon, a, b c, a a, a b c, b c a, b c b c, a a a, a a b c, \ldots\}$

Syntax

Definition (Syntax of regular expressions)

Regular expressions over alphabet $\boldsymbol{\Sigma}$ are constructed recursively:
(1) (Basis) $\emptyset, \boldsymbol{\epsilon}$, and $\boldsymbol{a} \in \boldsymbol{\Sigma}$ are regular expressions.
(2) (Induction)

If \boldsymbol{R}_{1} and $\boldsymbol{R}_{\mathbf{2}}$ are regular expressions, so are $\boldsymbol{R}_{1}+\boldsymbol{R}_{\mathbf{2}}$ and $\boldsymbol{R}_{\mathbf{1}} \cdot \boldsymbol{R}_{\mathbf{2}}$. If \boldsymbol{R} is a regular expression, so are \boldsymbol{R}^{*} and (\boldsymbol{R}).

$R \rightarrow l$| $R \rightarrow$ | \emptyset |
| :--- | :--- |
| \mid | ϵ |
| \mid | $a \in \Sigma$ |
| $:$ | $R_{1}+R_{2}$ |
| $:$ | $R_{1} \cdot R_{2}$ |
| $:$ | R^{*} |
| $:$ | (R) |

Semantics

Definition (Semantics of regular expressions)

A regular expression R means a set of strings, denoted $L(R)$, which is defined inductively:

$$
\begin{aligned}
L(\emptyset) & =\emptyset \\
L(\epsilon) & =\{\epsilon\} \\
L(a) & =\{a\} \\
L\left(R_{1}+R_{2}\right) & =L\left(R_{1}\right) \cup L\left(R_{2}\right) \\
L\left(R_{1} \cdot R_{2}\right) & =L\left(R_{1}\right) L\left(R_{2}\right) \\
L\left(R^{*}\right) & =(L(R))^{*} \\
L((R)) & =L(R)
\end{aligned}
$$

Example

$$
L\left(a^{*} \cdot(a+b)\right)=
$$

Exercises

Find the languages of the regular expressions and equivalent finite automata.

- $(a+b)^{*}$
- $(a+b)^{*}(a+b)$
- $(a \cdot a)^{*}(b \cdot b)^{*} b$

Exercises

Find regular expressions for the languages:

- $L=\left\{\boldsymbol{w} \in\{0,1\}^{*} \mid 0\right.$ and 1 alternate in $\left.\boldsymbol{w}\right\}$
- $L=\left\{w \in\{0,1\}^{*} \mid \boldsymbol{w}\right.$ has at least one pair of consecutive zeros $\}$
- $L=\left\{a^{n} b^{m} \mid n \geq 3, m\right.$ is even $\}$
- $L=\left\{a^{n} b^{m} \mid(n+m)\right.$ is even $\}$
- $L=\left\{a^{n} b^{m} \mid n \geq 4, m \leq 3\right\}$

cf) Automatic Synthesis of Regular Expressions

- Regular expressions are useful for specifying string patterns, but constructing a regular expression is nontrivial and difficult for end-users.
- Ex) Find a regular expression for the language:

$$
L=\left\{\boldsymbol{w} \in\{0,1\}^{*} \mid \boldsymbol{w} \text { has exactly one pair of consecutive } 0 \mathrm{~s}\right\}
$$

- Positive examples: $00,1001,010010,1011001110, \ldots$
- Negative examples: $01,11,000,00100, \ldots$
- Automatic synthesis of regular expressions from examples!

Regular Expression Synthesizer

Summary

- Syntax and semantics of regular expressions.
- Automatic synthesis of regular expressions. Read the paper:
- Mina Lee, Sunbeom So, and Hakjoo Oh.

Synthesizing Regular Expressions from Examples for Introductory Automata Assignments. GPCE 2016.

