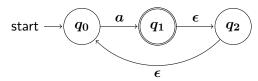
COSE215: Theory of Computation

Lecture 4 — ϵ -NFA

Hakjoo Oh 2018 Spring

NFA with ϵ -Transitions

NFAs with transitions on ϵ allowed.



$$M = (\{q_0, q_1, q_2\}, \{a\}, \delta, q_0, \{q_2\})$$
 $\delta(q_0, a) = \{q_1\}$
 $\delta(q_0, \epsilon) = \emptyset$
 $\delta(q_1, a) = \emptyset$
 $\delta(q_1, \epsilon) = \{q_2\}$
 $\delta(q_2, a) = \emptyset$
 $\delta(q_2, \epsilon) = \{q_0\}$

NFA with ϵ -Transitions

Definition

An ϵ -NFA:

$$M = (Q, \Sigma, \delta, q_0, F)$$

where

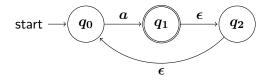
- Q: a finite set of states
- ullet Σ : a finite set of *input symbols* (or input alphabet)
- $q_0 \in Q$: the initial state
- ullet $F\subseteq Q$: a set of final states
- $\delta: Q imes (\Sigma \cup \{\epsilon\}) o 2^Q$: transition function

Extended Transition Function

Informal definition of $\delta^*: Q \times \Sigma^* \to 2^Q$:

Definition

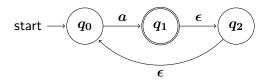
For an ϵ -NFA, the extended transition function is defined so that $\delta^*(q_i,w)$ contains q_j iff there is a path in the transition graph from q_i to q_j labeled by w.



- $\delta^*(q_1, a) =$
- $\delta^*(q_2,\epsilon) =$
- $\delta^*(q_2, aa) =$

Epsilon-Closures

 $\mathrm{ECLose}(q)$: the set of reachable states by ϵ -transitions.

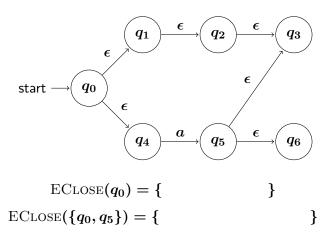


- ECLOSE $(q_0) =$
- ECLOSE $(q_1) =$
- ECLOSE $(q_2) =$

Defined recursively:

- ullet (Basis): ECLOSE($oldsymbol{q}$) includes $oldsymbol{q}$
- (Induction): If state p is in ECLOSE(q), and there is a transition from state p to state r labeled ϵ , then r is in ECLOSE(q).

Example



Formal Definition of δ^*

$$\delta^*:Q imes \Sigma^* o 2^Q$$

• (Basis)

$$\delta^*(q,\epsilon) = \mathrm{EClose}(q)$$

• (Induction)

$$\delta^*(q, ua) = \text{EClose}(igcup_{s_i \in \delta^*(q, u)} \delta(s_i, a))$$

Language of ϵ -NFA

An ϵ -NFA $M=(Q,\Sigma,\delta,q_0,F)$ accepts a string w if

$$\delta^*(q_0,w)\cap F\neq\emptyset$$

and the language of automaton $oldsymbol{M}$ is defined as follows:

$$L(M) = \{w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset\}$$

From ϵ -NFA to DFA

Given an ϵ -NFA $E=(Q_E,\Sigma,\delta_E,q_0,F_E)$, define a DFA:

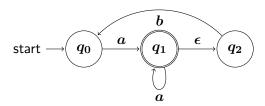
$$D = (Q_D, \Sigma, \delta_D, q_D, F_D)$$

- $Q_D = \{S \subseteq Q_E \mid S = \text{EClose}(S)\}$
- $q_D = \text{EClose}(q_0)$
- $\bullet \ F_D = \{S \in Q_D \mid S \cap F_E \neq \emptyset\}$
- ullet For each $S\in Q_D$ and input symbol $a\in \Sigma$:

$$\delta_D(S,a) = ext{ECLOSE}(igcup_{p \in S} \delta_E(p,a))$$

Exercise

Convert the following ϵ -NFA into an equivalent DFA.



Equivalence of ϵ -NFA and DFA

Theorem

A language L is accepted by some ϵ -NFA if and only if L is accepted by some DFA.

Proof.

- (If) Easy.
- (Only if) Exercise.

