COSE215: Theory of Computation

Lecture 20 — P, NP, and NP-Complete Problems

Hakjoo Oh
2018 Spring

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 1/14



Contents!

e P and NP
@ Polynomial-time reductions

@ NP-complete problems

!The slides are partly based on Siddhartha Sen's slides (“P, NP, and
NP-Completeness”)

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 2 /14



Problems Solvable in Polynomial Time (P)

o A Turing machine M is said to be of time complexity T'(n) if
whenever M is given an input w of length n, M halts after making
at most T'(n) moves, regardless of whether or not M accepts.

» Eg., T(n) = 5n2 T(n) = 3" + 5n?
e Polynomial time: T'(n) = agn® + ayn*~1 4+ ... + apn + Qk+t1

@ We say a language L is in class P if there is some polynomial T'(n)
such that L = L(M) for some deterministic TM M of time
complexity T'(n).

@ Problems solvable in polynomial time are called tractable.

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 3/14



Example: Kruskal's Algorithm

A greedy algorithm for finding a minimum-weight spanning tree for a
weighted graph.

@ a spanning tree: a subset of the edges such that all nodes are
connected through these edges

@ a minimum-weight spanning tree: a spanning tree with the least total
weight

12

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 4 /14



Example: Kruskal's Algorithm

o Consider the edge (1,3) with the lowest weight (10). Because nodes 1 and 3
are not contained in T' at the same time, include the edge in T

@ Consider the next edge in order of weights: (2,3). Since 2 and 3 are not in T
at the same time, include (2,3) in T

@ Consider the next edge: (1,2). Nodes 1 and 2 are in T'. Reject (1,2).
@ Consider the next edge (3,4) and include it in T.

@ We have three edges for the spanning tree of a 4-node graph, so stop.

The algorithm takes O(m + e log e) steps (O(n?) for multitape TM).

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 5/ 14



Nondeterministic Polynomial Time (NP)

@ We say a language L is in the class NP (nondeterministic polynomial) if
there is a nondeterministic TM M and a polynomial time complexity T'(n)
such that L = L(M), and when M is given an input of length n, there are
no sequences of more than T'(n) moves of M.

@ Example: TSP (Travelling Salesman Problem)

» finding a hamiltonian cycle (i.e., a cycle that contains all nodes and
each node exactly once) with minimum cost: e.g.,

» To solve TSP, we need to try an exponential number of cycles and
compute their total weight. Thus, TSP may not be in P. TSP is in
NP because NTM can guess an exponential number of possible
solutions and checking a hamiltonian cycle can be done in polynomial
time.

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 6 /14



P = NP?
One of the deepest open problems.

@ In words: everything that can be done in polynomial time by an NTM
can in fact be done by a DTM in polynomial time?

@ P C NP because every deterministic TM is a nondeterministic TM.

e P D NP? Probably not. It appears that AN”P contains many
problems not in P. However, no one proved it.

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 7/ 14



Implications of P = NP

If P=NP, then the world would be a profoundly different place
than we usually assume it to be. There would be no special value
in “creative leaps,” no fundamental gap between solving a
problem and recognizing the solution once it's found. Everyone
who could appreciate a symphony would be Mozart; everyone
who could follow a step-by-step argument would be Gauss;
everyone who could recognize a good investment strategy would
be Warren Buffett.

— Scott Aaronson

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 8 /14



NP-Complete Problems

@ NP-complete problems are the hardest problems in the NP class.

@ If any NP-complete problem can be solved in polynomial time, then
all problems in NP are solvable in polynomial time.

@ How to compare easiness/hardness of problems?

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 9 /14



Problem Solving by Reduction

L : the language (problem) to solve

Lo: the problem for which we have an algorithm to solve
Solve Ly by reducing Ly to Ly (L1 < L2) via function f:
@ Convert input @ of Ly to instance f(x) of Lo
* ¢ € L1 < f(x) € L2
@ Apply the algorithm for Ly to f(x)

Running time = time to compute f + time to apply algorithm for Lo

We write Ly <p Lo if f(x) is computable in polynomial time

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 10 / 14



Reductions show easiness/hardness

@ To show L is easy, reduce it to something we know is easy
» Ly < easy
» Use algorithm for easy language to decide L4
e To show Ly is hard, reduce something we know is hard to it (e.g.,
NP-complete problem)
> hard S Ly
» If Ly was easy, hard would be easy too

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 11 /14



NP-Complete Problems

We say L is NP-complete if
Q@ LisinNP

@ For every language L’ in NP, there is a polynomial time reduction
of L' to L (i.e., L' <p L)

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 12 / 14



The Boolean Satisfiability Problem

Determine if the given boolean formula can be true.
e xrN\x
e xN-(yVz)

The first problem proven to be NP-complete.

Theorem (Cook-Levin)
SAT is NP-complete. J

We need to show that
@ SAT is NP, and
@ for every L in NP, there is a polynomial-time reduction of L to SAT.

Many problems in artificial intelligence, automatic theorem proving, circuit
design, etc reduce to SAT/SMT problems.

e E.g., see Z3 SMT solver (https://github.com/Z3Prover/z3)

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 13 / 14


https://github.com/Z3Prover/z3

Summary

@ Undecidable
@ Decidable

» P

» NP

» NP-complete

Hakjoo Oh COSE215 2018 Spring, Lecture 20



