
COSE215: Theory of Computation

Lecture 20 — P, NP, and NP-Complete Problems

Hakjoo Oh
2018 Spring

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 1 / 14



Contents1

P and NP
Polynomial-time reductions

NP-complete problems

1The slides are partly based on Siddhartha Sen’s slides (“P, NP, and
NP-Completeness”)

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 2 / 14



Problems Solvable in Polynomial Time (P)

A Turing machine M is said to be of time complexity T (n) if
whenever M is given an input w of length n, M halts after making
at most T (n) moves, regardless of whether or not M accepts.

I E.g., T (n) = 5n2, T (n) = 3n + 5n4

Polynomial time: T (n) = a0n
k + a1n

k−1 + · · ·+ akn + ak+1

We say a language L is in class P if there is some polynomial T (n)
such that L = L(M) for some deterministic TM M of time
complexity T (n).

Problems solvable in polynomial time are called tractable.

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 3 / 14



Example: Kruskal’s Algorithm

A greedy algorithm for finding a minimum-weight spanning tree for a
weighted graph.

a spanning tree: a subset of the edges such that all nodes are
connected through these edges

a minimum-weight spanning tree: a spanning tree with the least total
weight

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 4 / 14



Example: Kruskal’s Algorithm

Consider the edge (1,3) with the lowest weight (10). Because nodes 1 and 3
are not contained in T at the same time, include the edge in T .

Consider the next edge in order of weights: (2,3). Since 2 and 3 are not in T
at the same time, include (2,3) in T .

Consider the next edge: (1,2). Nodes 1 and 2 are in T . Reject (1,2).

Consider the next edge (3,4) and include it in T .

We have three edges for the spanning tree of a 4-node graph, so stop.

The algorithm takes O(m + e log e) steps (O(n2) for multitape TM).
Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 5 / 14



Nondeterministic Polynomial Time (NP)

We say a language L is in the class NP (nondeterministic polynomial) if
there is a nondeterministic TM M and a polynomial time complexity T (n)
such that L = L(M), and when M is given an input of length n, there are
no sequences of more than T (n) moves of M .

Example: TSP (Travelling Salesman Problem)
I finding a hamiltonian cycle (i.e., a cycle that contains all nodes and

each node exactly once) with minimum cost: e.g.,

I To solve TSP, we need to try an exponential number of cycles and
compute their total weight. Thus, TSP may not be in P . TSP is in
NP because NTM can guess an exponential number of possible
solutions and checking a hamiltonian cycle can be done in polynomial
time.

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 6 / 14



P = NP?

One of the deepest open problems.

In words: everything that can be done in polynomial time by an NTM
can in fact be done by a DTM in polynomial time?

P ⊆ NP because every deterministic TM is a nondeterministic TM.

P ⊇ NP? Probably not. It appears that NP contains many
problems not in P . However, no one proved it.

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 7 / 14



Implications of P = NP
If P=NP, then the world would be a profoundly different place
than we usually assume it to be. There would be no special value
in “creative leaps,” no fundamental gap between solving a
problem and recognizing the solution once it’s found. Everyone
who could appreciate a symphony would be Mozart; everyone
who could follow a step-by-step argument would be Gauss;
everyone who could recognize a good investment strategy would
be Warren Buffett.

— Scott Aaronson

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 8 / 14



NP-Complete Problems

NP-complete problems are the hardest problems in the NP class.

If any NP-complete problem can be solved in polynomial time, then
all problems in NP are solvable in polynomial time.

How to compare easiness/hardness of problems?

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 9 / 14



Problem Solving by Reduction

L1: the language (problem) to solve

L2: the problem for which we have an algorithm to solve

Solve L1 by reducing L1 to L2 (L1 ≤ L2) via function f :
1 Convert input x of L1 to instance f(x) of L2

F x ∈ L1 ⇐⇒ f(x) ∈ L2

2 Apply the algorithm for L2 to f(x)

Running time = time to compute f + time to apply algorithm for L2

We write L1 ≤P L2 if f(x) is computable in polynomial time

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 10 / 14



Reductions show easiness/hardness

To show L1 is easy, reduce it to something we know is easy
I L1 ≤ easy
I Use algorithm for easy language to decide L1

To show L1 is hard, reduce something we know is hard to it (e.g.,
NP-complete problem)

I hard ≤ L1

I If L1 was easy, hard would be easy too

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 11 / 14



NP-Complete Problems

We say L is NP-complete if

1 L is in NP
2 For every language L′ in NP , there is a polynomial time reduction

of L′ to L (i.e., L′ ≤P L)

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 12 / 14



The Boolean Satisfiability Problem

Determine if the given boolean formula can be true.

x ∧ ¬x
x ∧ ¬(y ∨ z)

The first problem proven to be NP-complete.

Theorem (Cook-Levin)

SAT is NP-complete.

We need to show that

1 SAT is NP, and

2 for every L in NP, there is a polynomial-time reduction of L to SAT.

Many problems in artificial intelligence, automatic theorem proving, circuit
design, etc reduce to SAT/SMT problems.

E.g., see Z3 SMT solver (https://github.com/Z3Prover/z3)

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 13 / 14

https://github.com/Z3Prover/z3


Summary

Undecidable

Decidable
I P
I NP
I NP-complete

Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 14 / 14


