COSE215: Theory of Computation

Lecture 1 - Mathematical Preliminaries

Hakjoo Oh
2018 Spring

Contents

- Basic set theory
- Inductive proofs
- Language

Sets

- A set is a collection of elements, e.g.,
- $S=\{0,1,2\}=\{x \in \mathbb{N} \mid 0 \leq x \leq 2\}$
- $S=\{2,4,6, \ldots\}=\{x \in \mathbb{N} \mid x$ is even $\}$
- Notations:
- $\emptyset:$ the empty set
- $S_{1} \subseteq S_{2}$ iff $\forall x \in S_{1} . x \in S_{2}$
- $S_{1} \subset S_{2}$ if $S_{1} \subseteq S_{2}$ and $S_{1} \neq S_{2}$, e.g., $\{1,2\} \subset\{1,2,3\}$, $\{1,2\} \not \subset\{1,2\}$
- $|S|$: the number of elements in set S
- S_{1} and S_{2} are disjoint iff $S_{1} \cap S_{2}=\emptyset$.

Construction of Sets

- Union, intersection, and difference:

$$
\begin{aligned}
S_{1} \cup S_{2} & =\left\{x \mid x \in S_{1} \vee x \in S_{2}\right\} \\
S_{1} \cap S_{2} & =\left\{x \mid x \in S_{1} \wedge x \in S_{2}\right\} \\
S_{1}-S_{2} & =\left\{x \mid x \in S_{1} \wedge x \notin S_{2}\right\}
\end{aligned}
$$

- $\bar{S}=\{x \mid x \in U \wedge x \notin S\}$
- Powerset: $2^{S}=\mathcal{P}(S)=\{x \mid x \subseteq S\}$
- Cartesian product:

$$
S_{1} \times S_{2}=\left\{(x, y) \mid x \in S_{1} \wedge y \in S_{2}\right\}
$$

In general,

$$
S_{1} \times S_{2} \times \cdots \times S_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in S_{i}\right\}
$$

Partition

When $S_{1}, S_{2}, \ldots, S_{n}$ are subsets of a given set $S, S_{1}, S_{2}, \ldots, S_{n}$ forms a partition of \boldsymbol{S} iff:
(1) $S_{1}, S_{2}, \ldots, S_{n}$ are mutually disjoint:

$$
\forall i, j . i \neq j \Longrightarrow S_{i} \cap S_{j}=\emptyset
$$

(2) $S_{1}, S_{2}, \ldots, S_{n}$ cover S :

$$
\bigcup_{1 \leq i \leq n} S_{i}=S
$$

(3) none of $\boldsymbol{S}_{\boldsymbol{i}}$ is empty: $\forall i . \boldsymbol{S}_{\boldsymbol{i}} \neq \emptyset$.

Inductive proofs

In CS, every set is inductively defined. E.g.,

Example (Inductive Definition of Trees)

A set of trees is defined as follows:
(1) (Basis) A single node (called root) is a tree.
(2) (Induction) If $T_{1}, T_{2}, \ldots, T_{k}$ are trees, then the following is also a tree:
(1) Begin with a new node \boldsymbol{N}, which is the root of the tree.
(2) Add edges from N to the roots of each of the trees $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}, \ldots, \boldsymbol{T}_{\boldsymbol{k}}$.

Example (Inductive Definition of Arithmetic Expressions)

A set of arithmetic expressions is defined as follows:

- (Basis) Any number or letter (i.e., a variable) is an expression.
- (Induction) If \boldsymbol{E} and \boldsymbol{F} are expressions, then so are $\boldsymbol{E}+\boldsymbol{F}, \boldsymbol{E} * \boldsymbol{F}$, and (\boldsymbol{E}).

Inductive Proofs

Induction is used to prove properties about inductively defined sets. Let S be an inductively-defined set. Let $\boldsymbol{P}(\boldsymbol{x})$ be a property of \boldsymbol{x}. To show that, for all $\boldsymbol{x} \in \boldsymbol{S . P}(\boldsymbol{x})$, it suffices to show that:
(1) (Base case): Show $\boldsymbol{P}(x)$ for all basis elements $\boldsymbol{x} \in S$.
(2) (Inductive case): For each inductive rule using elements x_{1}, \ldots, x_{k} of \boldsymbol{S} to construct an element \boldsymbol{x}, show that

$$
\text { if } P\left(x_{1}\right), \ldots, P\left(x_{k}\right) \text { then } P(x)
$$

$P\left(x_{1}\right), \ldots, P\left(x_{k}\right)$: induction hypotheses.

Inductive Proofs: Example

Prove that every tree has one more node than it has edges.

Proof.

Formally, what we prove is $\boldsymbol{P}(\boldsymbol{T})=$ "if \boldsymbol{T} is a tree, and \boldsymbol{T} has \boldsymbol{n} nodes and \boldsymbol{e} edges, then $n=e+1^{\prime \prime}$.
(1) Base case: The base case is when \boldsymbol{T} is a single node. Then, $\boldsymbol{n}=\mathbf{1}$ and $\boldsymbol{e}=\mathbf{0}$, so the relationship $n=e+1$ holds.
(2) Inductive case: The inductive case is when \boldsymbol{T} is built with root node \boldsymbol{N} and \boldsymbol{k} smaller trees $T_{1}, T_{2}, \ldots, T_{k}$.
(1) Induction hypothesis: The statements $\boldsymbol{P}\left(\boldsymbol{T}_{\boldsymbol{i}}\right)$ holds for $\boldsymbol{i}=1,2, \ldots, \boldsymbol{k}$. That is $\boldsymbol{T}_{\boldsymbol{i}}$ have n_{i} nodes and e_{i} edges; then $n_{i}=e_{i}+\mathbf{1}$.
(2) To Show: $\boldsymbol{P}(\boldsymbol{T})$ holds: if \boldsymbol{T} has n nodes and e edges, then $n=e+1$. The nodes of \boldsymbol{T} are node \boldsymbol{N} and all the nodes of the $\boldsymbol{T}_{\boldsymbol{i}}$'s, i.e., $\boldsymbol{n}=\mathbf{1}+\boldsymbol{n}_{\boldsymbol{1}}+\cdots+\boldsymbol{n}_{\boldsymbol{k}}$ The edges of \boldsymbol{T} are the \boldsymbol{k} edges we added explicitly in the inductive definition step, plus the edges of the \boldsymbol{T}_{i} 's. Hence, \boldsymbol{T} has $\boldsymbol{e}=\boldsymbol{k}+\boldsymbol{e}_{\mathbf{1}}+\cdots+\boldsymbol{e}_{\boldsymbol{k}}$ edges.

$$
\begin{array}{rlr}
n & =1+n_{1}+\cdots+n_{k} & \text { def. of } n \\
& =1+\left(e_{1}+1\right)+\cdots+\left(e_{k}+1\right) & \text { induction hypothesis } \\
& =1+k+e_{1}+\cdots+e_{k} & \\
& =1+e & \text { def. of } e
\end{array}
$$

Inductive Proofs: Example

Prove that every expression has an equal number of left and right parentheses.

Proof.

Formally, the formal statement $\boldsymbol{P}(\boldsymbol{G})$ we need to prove is: "if \boldsymbol{G} has l left parentheses and \boldsymbol{r} right parentheses, then $l=r$."
(1) Base case: The base case is when \boldsymbol{G} is a number or a variable, in which cases $l=\boldsymbol{r}=\mathbf{0}$.
(2) Inductive case: There are three cases, where \boldsymbol{G} is constructed recursively from smaller expressions:
$\boldsymbol{G}=\boldsymbol{E}+\boldsymbol{F}:$
(1) Induction hypothesis: The statement holds for all smaller expressions: for \boldsymbol{E}, $l_{E}=r_{E}$, and for $F, l_{F}=r_{F}$.
(2) To Show: $P(G)$ holds: $l_{G}=r_{G}$:

$$
\begin{aligned}
l_{G} & =l_{E}+l_{F} \\
& =r_{E}+r_{F} \\
& =r_{G}
\end{aligned}
$$

$\boldsymbol{G}=\boldsymbol{E} * \boldsymbol{F}$: similar
$G=(E)$: similar

Alphabet

A finite, non-empty set of symbols, e.g.,
(1) $\Sigma=\{0,1\}$: the binary alphabet.
(2) $\Sigma=\{a, b, \ldots, z\}$: the set of all lowercase letters.
(3) The set of all ASCII characters.

String

A finite sequence of symbols chosen from an alphabet, e.g.,
(1) $\Sigma=\{0,1\}: 0,1,00,01, \ldots$
(2) $\Sigma=\{a, b, c\}: a, b, c, a b, b c, \ldots$

Notations:

- ϵ : the empty string
- $\boldsymbol{w} \boldsymbol{v}$: the concatenation of \boldsymbol{w} and \boldsymbol{v}
- w^{R} : the reverse of \boldsymbol{w}
- $|\boldsymbol{w}|$: the length of string \boldsymbol{w}
- $\boldsymbol{w}=\boldsymbol{v} \boldsymbol{u}: \boldsymbol{v}$ is a prefix and \boldsymbol{u} a suffix of \boldsymbol{w}.
- $\boldsymbol{\Sigma}^{\boldsymbol{k}}$: the set of strings (over $\boldsymbol{\Sigma}$) of length \boldsymbol{k}
- $\Sigma^{*}=\Sigma^{0} \cup \Sigma^{1} \cup \Sigma^{2} \cup \cdots=\bigcup_{k \geq 0} \Sigma^{k}$
- $\Sigma^{+}=\Sigma^{+}=\Sigma^{1} \cup \Sigma^{2} \cup \cdots=\bigcup_{k \geq 1} \Sigma^{k}$

Language

A language \boldsymbol{L} is a set of strings, i.e., $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}\left(\boldsymbol{L} \in \mathbf{2}^{\boldsymbol{\Sigma}^{*}}\right)$
When $\Sigma=\{0,1\}$,

- $L_{1}=\{0,00,001\}$
- $L_{2}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
- $L_{3}=\{\epsilon, 01,10,0011,0101,1001, \ldots\}$
- $L_{3}=\{10,11,101,111,1011, \ldots\}$

Language Operations

- union, intersection, difference: $L_{1} \cup L_{2}, \quad L_{1} \cap L_{2}, \quad L_{1}-L_{2}$
- reverse: $L^{R}=\left\{w^{R} \mid w \in L\right\}$
- complement: $\overline{\boldsymbol{L}}=\boldsymbol{\Sigma}^{*}-\boldsymbol{L}$
- concatenation of L_{1} and L_{2} :

$$
L_{1} L_{2}=\left\{x y \mid x \in L_{1} \wedge y \in L_{2}\right\}
$$

- power:

$$
\begin{aligned}
L^{0} & =\{\epsilon\} \\
L^{n} & =L^{n-1} L
\end{aligned}
$$

- closures:

$$
\begin{aligned}
& L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \cdots=\bigcup_{i \geq 0} L^{i} \\
& L^{+}=L^{1} \cup L^{2} \cup L^{3} \cup \cdots=\bigcup_{i \geq 1} L^{i}
\end{aligned}
$$

Exercises

(1) Consider $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$.
(1) $L^{2}=$
(2) $L^{R}=$
(2) Prove that $(u v)^{R}=v^{R} u^{R}$ for all $u, v \in \Sigma^{+}$.

Summary

- Sets: definition, notations, constructions
- Inductive definitions and proofs.
- Alphabet, String, Language

