Homework 3
 COSE215, Spring 2018

Hakjoo Oh

Due: 5/24 (Thu), 14:00 (in class)

Problem 1 (20pts) Design context-free grammars for the following languages:

1. The language described by regular expression $0^{*} 1(0+1)^{*}$
2. $L=\left\{a^{n} b^{m} \mid n \neq m-1\right\}$ (n and m are non-negative integers)
3. The language of all balanced round and square parentheses.

$$
L=\{\epsilon,(),[],()],([]),[()], \ldots,([]([][][()])]]), \ldots\}
$$

Note that strings like ([)] that are not properly balanced do not belong to L.
Problem 2 (10pts) The following grammar generates prefix expressions with operands x and y and binary operators,+- , and $*$:

$$
E \rightarrow+E E|* E E|-E E|x| y
$$

1. Find leftmost and rightmost derivations, and a parse tree for the string $+*-x y x y$.
2. Is this grammar ambiguous or unambiguous? Explain.

Problem 3 (10pts) Design a PDA that accepts the following language:

$$
L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}
$$

Problem 4 (10pts) Design a PDA that accepts the following language:

$$
L=\left\{w \mid n_{0}(w)=n_{1}(w)\right\}
$$

where $n_{0}(w)$ (resp., $\left.n_{1}(w)\right)$ denotes the number of $0($ respl, 1$)$ in w.
Problem 5 (10pts) Design a deterministic PDA that accepts the language:

$$
L=\left\{0^{n} 1^{m} \mid n \leq m\right\}
$$

Problem 6 (20pts) Consider the following grammar:

$$
\begin{aligned}
& S \rightarrow A S B \mid \epsilon \\
& A \rightarrow a A S \mid a \\
& B \rightarrow S b|A| b b
\end{aligned}
$$

1. Eliminate ϵ-productions.
2. Eliminate any unit productions in the resulting grammar.
3. Eliminate any useless symbols in the resulting grammar.
4. Put the resulting grammar into Chomsky Normal Form.

Problem 7 (20pts) Prove that the following languages are not context-free:

1. $L=\left\{a^{n} b^{n} c^{i} \mid i \leq n\right\}$
2. $L=\left\{0^{p} \mid p\right.$ is a prime $\}$
