Homework 1 COSE215, Spring 2018

Hakjoo Oh

Due: 4/3, 14:00 (in class)

Problem 1 (10pts) Design a DFA (deterministic finite automata) that accepts the following language:

$$L = \{w00 \mid w \in \{0, 1\}^*\}$$

Problem 2 (10pts) Design an NFA (nondeterministic finite automata) that accepts the language in Problem 1.

Problem 3 (10pts) Design a DFA that accepts the following language:

$$L = \{u00v \mid u, v \in \{0, 1\}^*\}$$

Problem 4 (10pts) Design an NFA that accepts the language in Problem 3.

Problem 5 (10pts) Design an NFA that recognizes the following sets of strings:

$$L = \{\texttt{theory}, \texttt{dfa}\}.$$

where assume that Σ is the set of lowercase letters.

Problem 6 (10pts) Design an ϵ -NFA that accepts the following language:

$$L = \{a^m b^n c^o \mid m, n, o \ge 0\}$$

Problem 7 (20pts) Convert the following NFA to a DFA:

start
$$\rightarrow$$
 q_0 a q_1 a, b q_2 a q_3 a, b a, b

Problem 8 (20pts) Consider the following transition table of a ϵ -NFA:

where p is the initial state and r is the final state.

- 1. (10pts) Compute the ϵ -closure(ECLOSE) of each state.
- 2. (10pts) Convert the automaton to a DFA.